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Abstract
This paper presents a new algorithm for relocating sensors in a Wireless Sensor and 
Robots Network (WSRN) using a mobile robot. The goal is to repair coverage holes 
using redundant sensors that are caused by an initial random deployment. The holes 
are repaired without prior knowledge of their positions or that of the redundant sen-
sors. The existing solutions mainly focus either on how to optimally repair holes 
by determining to where relocate redundant sensors, or how to build a repair path 
with assumption that the positions of holes and redundant sensors are known. In 
both scenarios, the literature lacked the optimization of the robot’s path for its initial 
exploration to identify both the holes and redundant sensors. Our proposed solution 
introduces an efficient robot trajectory that utilizes stochastic paths that adhere to the 
principles of light reflection. This trajectory serves the dual purpose of identifying 
redundant sensors and detecting as well as repairing coverage holes. We achieve this 
by incorporating the law of large numbers into the light reflection principal, enabling 
the robot to move randomly while adhering to the pathways of light reflection to 
efficiently relocate the redundant sensors. This approach results in a highly efficient 
and effective sensor relocation process. The effectiveness of the proposed solution 
is assessed across multiple parameters, including relocation time, the length of the 
relocation path, the robot average moves, and the total energy consumption required 
to cover holes with varying carrying capacity, dimensions of region of interest, cov-
erage ratio and exit angles of reflection. Through a series of extensive simulations, 
we provide compelling evidence that our proposed solution distinctly surpasses the 
existing state-of-the-art approaches. This notable advantage becomes evident in 
multiple aspects: from reduced relocation time and shorter relocation path length to 
minimized total energy consumption. These combined enhancements underscore the 
effectiveness of our solution in tackling the challenge of sensor relocation.
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1  Introduction

Wireless sensor networks (WSNs) consist of a set of nodes with sensing, compu-
tation, and wireless communication capabilities [1, 2] deployed over a large geo-
graphical area, also known as a region of interest (ROI), to monitor physical or 
environmental conditions. These sensor nodes monitor and control a wide range 
of ambient conditions such as temperature, humidity, pressure, light and vehicu-
lar movement [3]. To meet the application requirements, sensor nodes need to be 
efficiently deployed to ensure continuous and optimal coverage of the entire ROI 
throughout the whole network lifetime.

Roughly speaking, coverage refers to the ability of sensor nodes to detect 
events within the monitored region. Therefore, the basic objective of nodes place-
ment is to ensure that every point within the ROI is within the sensing range 
of at least one node. In this type of network, efficient network deployment can 
significantly improve the quality of collected data while minimizing deployment 
costs. Depending on the type, size, and application domain of the ROI that has 
to be monitored [4], the deployment of a sensor network might be determinis-
tic (planned) or random [5]. Deterministic deployment is planned to achieve 
maximum coverage using the optimal number of nodes. However, to meet its 
goal, prior knowledge of ROI is required, which is not always available. Ran-
dom deployment, however, scatters sensor nodes by aircraft and result in a rand-
omized distribution. This kind of deployment, even if it is not accurate and incurs 
to deploy more sensors than necessary, it is more appropriate in harsh or hostile 
environments such as forests or deserts. Random deployment cannot ensure effi-
cient coverage of the monitored ROI, where some regions can be left uncovered 
(coverage holes) or covered simultaneously by multiple sensors (redundant sen-
sors). Consequently, a post-deployment that leverages the information about the 
current network coverage state from the already deployed sensors, is needed to 
complete the initial random deployment, and correct the existing coverage holes.

In the literature, two main approaches exist for recovering the initial random 
deployment. The first one consists in using mobile sensors that can autonomously 
adjust their locations to fill emerging coverage holes. However, equipping every 
sensor node with locomotion is expensive given the large-scale nature of the 
network. In addition, a mobile sensor consumes a large amount of energy due 
to movement which negatively affects the network lifetime. The second alterna-
tive cost-effective approach is to use a small group of mobile robots to carry the 
redundant static sensors and relocate them to the uncovered area (coverage holes). 
This problem is known as carrier-based sensors relocation in wireless sensors 
and robots networks.

In the carrier-based sensors relocation problem, robots move within the ROI 
to discover both sensing holes and redundant sensors and then relocate the dis-
covered redundant sensors to the encountered holes positions. The goal is to 
find the optimal algorithm that ensures maximum coverage while minimizing 
the total path traveled by the robot. The existing work to deal with this problem 
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can be classified into centralized and decentralized solutions. Centralized 
approach requires three steps: (i) exploring and collecting all redundant sen-
sors and holes positions from the deployed sensors and transmitting them to the 
central server, (ii) calculating the best robot path to repair the holes using the 
collected information during the first step, and (iii) repairing the holes by the 
robot following the path calculated in the second step. However, for ROI with 
large sizes, the robot requires a longer time to complete the exploration and 
collecting step. Consequently, the complexity of the algorithm increases with 
the expansion of the ROI. In the decentralized approach, however, the robot 
moves within the ROI to explore and at the same time repair sensing holes. On 
each moving step, the robot tries to discover and repair holes within its com-
munication range and then decides its next moving step. Most existing decen-
tralized algorithms to solve the carried-based sensor deployment problem use 
the least recently visited (LRV) algorithm [6]. LRV allows the robot to explore 
and repair holes in the ROI based only on local criteria. In LRV, the robot com-
municates with its neighboring sensors, which in turn provide directional guid-
ance to the robot to place a sensor and cover holes. Usually, LRV requires many 
unnecessary (redundant) movements to achieve full coverage, which leads to 
high communication overhead and increases the holes repair time. In this paper, 
we opt to design a more efficient decentralized algorithm to solve the carrier-
based sensor relocation problem that ensures full coverage while minimizing 
the robot displacement.

Our approach is novel, efficient and distinct from prior research endeavors. We 
incorporate both the principle of light reflection and the law of large numbers to out-
line the robot’s movement strategy within the ROI. Light reflection is well known for 
its efficiency [7], precision [8] and adaptability [9]. Law of large numbers [10] allows 
robots to walk randomly while tracking the path of light reflection. Furthermore, our 
approach doesn’t necessitate any preemptive knowledge regarding the positions of 
coverage holes or redundant sensors, which makes solution more flexible for repairing 
holes. In the baseline solution, the robot operates autonomously and without synchro-
nization. It follows a light reflection path to explore and repair the ROI. The second 
algorithm upgrades the first one by defining a new path based on light reflection and 
the large number law. For this solution, the robot walks randomly while still follow-
ing the light reflection path. This enables the robot to explore not only the reflection 
axes but also their surroundings in a single pass. This approach leads to more efficient 
redundant sensor collection and hole repair. This paper also assesses the performance 
of both algorithms by evaluating the total time needed by the robot to explore and cover 
holes. Our experiments have been conducted by considering ROI with large size. The 
rest of the paper is organized as follows. Section 2 reviews related literature work. The 
system model as well as the description of the concept and approach of the proposed 
carrier-based sensor deployment algorithms are given in Sects. 3 and 4, respectively. In 
Sect. 5, we present the outcomes of our simulation, and finally we conclude the paper 
in Sect. 6.
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2 � Related Works

Establishing an effective sensor deployment strategy is a core concern in the 
realization of a WSN designed to monitor a specific ROI and transmit the gath-
ered data to a central base station. The deployment model determines the sensor 
types, number and positions necessary to construct an effective system that can 
fulfill the requirements of a given application scenario. The deployment strate-
gies are mainly classified into two categories [11–13]: deterministic and random. 
The choice of deployment strategy is influenced by factors such as the size of 
the monitored area and the specific application domain, all aimed at achieving 
optimal coverage [4]. In the majority of cases, random deployment is the favored 
approach due to its simplicity and adaptability to diverse areas of interest (e.g., 
war zones, inaccessible regions, etc.). The latter is subdivided into two distinct 
types of algorithms: The first involves self-deployment algorithms, where sensors 
independently relocate to insure full coverage after an initial random deployment. 
The second type pertains to carrier-based sensor deployment, wherein mobile 
robots take in charge the relocation of redundant sensors that were originally 
placed randomly. This paper specifically focuses on the carrier-based approach. 
Hereafter, we present a concise review of related works concerning sensor 
deployment in WSNs.

Li et  al. [6] introduced a family of localized algorithms: R3S2, G-R3S2 and 
CR3S2. In thier approach, sensors and robots are scattered randomly across the 
ROI. In the R3S2 algorithm, the robot moves randomly, and establishes commu-
nication with sensors within its range to identify coverage holes and redundant 
sensors. If the carrying capacity of the robot is zero, it focuses on locating redun-
dant sensor; otherwise, it seeks out holes in need of coverage. In the G-R3S2 
algorithm, the area is divided into a virtual grid. Akin to [14], the robot navi-
gates between the grids, selecting the direction that has been least recently vis-
ited (LRV). In the CR3S2 algorithm, the authors adopt a Connected Dominating 
Set (CDS) strategy. The cluster head is determined as the sensor with the highest 
ID. This method involves four adjacent grids and combines the information about 
holes and redundant sensors from cluster members into a single information that 
is disseminated to all members within the cluster. While using the LRV technique 
to explore the ROI, these algorithms, however, necessitate numerous unneces-
sary movements to achieve complete coverage. Additionally, the robot’s carry-
ing capacity is constrained to one, a limitation that might not reflect real-world 
scenarios.

In [15, 16], the authors focused on optimizing the number of redundant sen-
sors needed to repair a hole. The robot’s exploration of the ROI relies on the LRV 
technique. However, the use of LRV introduces unnecessary movements which 
subsequently increase the relocation time. Additionally, similar to [6], the robot’s 
carrying capacity is limited to one.

Desjardins et  al. [17–19] proposed a multi-objective methodology to address 
the redeployment problem. In [17], they assigned a representation of 1 to each 
redundant sensor and −1 to the holes. The objective is to determine a replacement 
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trajectory for sensors using scalable multi-objective optimization (EMOO) algo-
rithm. This algorithm takes into account the quality of the carrying passive sen-
sors (battery capacity) or their initial positioning prior to relocation. In addition, 
authors use additional decision objectives such as ensuring the robot always 
deploys the latest-worn sensor upon reaching a coverage hole. The algorithm 
uses a greedy heuristic to shorten the trajectory. In [18], the previous algorithm 
presented in [17] was enhanced. The authors employed the Risk Management 
Framework (RMF) [20] for proactive sensor replacement. This methodology 
proactively detects high-risk sensors failure and replaces them to avert the emer-
gence of coverage holes, thereby minimizing any potential deficiencies in cover-
age across the ROI. In [19], authors extend the two previous solutions [17, 18] by 
considering the scenario involving multiple robots. An additional objective func-
tion is introduced to ensure load balancing among participating robots. However, 
the complexity increases with higher number of sensor to be replaced. Conse-
quently, these algorithms may not be suitable in contexts involving extensive sen-
sor relocation requirements.

In [21], the approach involves partitioning the ROI into grids. The robot first passes 
through the entire ROI to collect the number of redundant sensors and the number of 
coverage holes within each grid. Based on these metrics, the robot path is build to cover 
holes in the ROI. To repair the holes, redundant sensors from adjacent grids are uti-
lized. If the number of redundant sensors in the adjacent grids is not enough, the solu-
tion extends to secondary level grids and so on, until a sufficient quantity of redun-
dant sensors is obtained for hole reparation within a grid. However, in this solution, 
although the robot possesses a global view of the network,it does not fully exploit it. 
Instead, it resorts to a local view for repair, which might not consistently yield the most 
optimal path.

In [22], theissue is approached as an extension of the traveling salesman problem 
(TSP), aiming at achieving a more efficient solution for the relocation problem in a 
large-scale scenario. The authors use Lin–Kernighan–Helsgaun (LKH) heuristic to 
form a Hamiltonian cycle. The robot path is thus constructed with a constraint that the 
robot only passes through a hole if it carries a redundant sensor, and respectively it 
only passes through a redundant sensor if its carrying capacity has not been reached. 
Nonetheless, it’s important to note that the LKH heuristic operates through iterations. 
Consequently, as the path length increases, so does the complexity of the process.

In [23], the robot replaces damaged sensors by picking up spare ones from 
the region of interest or carrying them from a central station. By using the LKH 
algorithm, the shortest Hamiltonian cycle of all delivery nodes (holes) is first con-
structed. The baseline path is then modified by adding passive sensors while mini-
mizing its length.

3 � Background

In this section, the basic techniques employed in the proposed algorithms are briefly 
described. These techniques include the principle of light reflection [24, 25] and the 
law of large numbers [10].
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3.1 � Reflection of Light

When light bounces a smooth, shiny surface, it is reflected at the same angle 
at which it struck the surface. The ray that undergoes this reflection is called the 
reflected ray, the point where the surface is hit is called the point of incidence, and 
the line perpendicular to this point is called the normal. The angle formed by the 
ray of incidence with the normal is called the angle of reflection. Figure 1 shows an 
illustrative example of light reflection. This principal of light reflection is applied 
within our algorithm to enable the robot to efficiently navigate and explore the ROI.

3.2 � Law of Large Numbers

In statistics and probability theory, the law of large numbers [10, 26] stipulates that 
when a given experiment is repeated a large number of times, the average of the 
results should be close to the expected value. Additionally, in statistics, the central 
limit theorem states that if you sufficiently repeat an experiment using random sam-
ples, the mean of these samples tends to follow a normal distribution. As a result, 
the samples’ mean will be closer to the central line, or the line through which the 
mean of a normal distribution curve is marked [27]. It is demonstrated in practice 
that this theorem is true whenever the number of experiments, n, is greater or equal 
to 30 [28].

In our case, the objective is to explore the ROI based on the principle of random 
walk with a reflection light trend. The robot repeats the same experiment to explore 
the ROI a large number of times given the size of the ROI to be monitored. So, the 
average of the results of this walk should be close to the reflection of light principle.

4 � System Model

We consider a WSN, where static sensor nodes and a mobile robot are randomly 
scattered throughout the ROI. Let S = {S0, S1,… , Sn−1} be the set of n static sen-
sors. A sensing hole is an area that is continuously uncovered. A sensor whose sens-
ing range is fully overlapped by other neighbor sensors is defined as a redundant 
sensor. We assume that there are sufficient redundant sensors to repair all ROI holes. 

Fig. 1   Reflection of light
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The proposed algorithms allow the robot to carry redundant sensors to cover holes. 
A robot’s carrying capacity is limited to the number of static sensors it can carry. 
For simplicity, similar to that in [6, 11–13], we assume that nodes (sensors and 
robot) have circular-shaped coverage. Identical sensors have the same sensing circle 
rs and communication circle rc, where rc ≥ 2rs ensures all sensors with overlap are 
connected. The robot has a communication range Rc, where Rc > rc . Direct com-
munication can take place between any two nodes, only when they are within each 
other’s transmission range. We also assume that the position of every robot and sen-
sor is known by using a localization system, such as GPS. For the sake of simplicity 
we model the ROI as a square of side length M = L (where M and L are the lengths 
of the area in the xx and yy directions, respectively).

5 � Efficient Relocation Algorithms

In this paper, we propose two algorithms that deal with the carrier-based sensor 
deployment problem. The algorithms allow the robot to collect redundant sensors 
and place them in uncovered areas. In the first variant of our algorithm: Reflection 
based sensor relocation algorithm (R-SR), the robot explores the area using the 
reflection of light principle to localise and repair the coverage holes in the ROI with 
localised redundant sensors. This principle ensures that the robot visits the entire 
ROI. This allows it to discover and repair all uncovered areas in the ROI, ensuring 
full coverage. In the second variant: Light Reflection based sensor relocation algo-
rithm (LR-SR), instead of the robot exploring only the axis of reflection, it makes a 
random walk around the axis generated by the law of reflection to explore the sur-
roundings of the axis. As a result of this exploration, the robot can repair more holes 
(using redundant carried sensors) within a single passage, reducing relocation time.

Sensors and a robot are randomly scattered throughout the ROI. Through periodic 
‘hello’ messages, each sensor identifies if it is redundant or hole boundary. In the 
literature there are several algorithms which deal with holes detection and redun-
dant sensors detection which can be directly applied, so we have not addressed this 
point in our paper. For example, the algorithm proposed by [29–31] can be used to 
allow a sensor to detect if it is a redundant sensor and [32–34] to detect if it is a hole 
boundary.

5.1 � R‑SR Algorithm

In R-SR, the robot begins a research process from a given point of the ROI, which 
consists of moving step by step to localize the existing redundant sensors and holes. 
The robot didn’t need any initial information about the ROI or sensors, it moves 
autonomously and asynchronously.

The robot moves for distance Δ along the light reflection axes. Then, it stops 
moving and communicates with sensors in its communication range to collect 
information about redundant sensors and holes in their neighboring. Basing on this 
information, the robot repairs as possible (if there is enough redundant sensors) the 
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detected holes using the carrying redundant sensors and the detected redundant sen-
sors. Once the robot repairs holes, it moves for another Δ along the reflection axes 
and repeat this process until the full coverage is reached.

Initially, the robot starts exploring at a point on the ROI’s border with an exit 
angle of � . The choice of the angle � and start point are very critical and need to be 
optimized. If the right exit angle is chosen, few light reflection axes are sufficient for 
the robot to cover all the ROI. Otherwise, it needs more light reflection axes to cover 
the ROI. The right angle depends on the robot’s communication radius, since the 
angle defines the distance between light reflection axes. If the distance between light 
reflection axes is more than 2*RC, the robot is uninformed of all holes and redun-
dant sensors. The sensors located at a distance greater than RC from the first reflec-
tion axe and the second reflection axe are unable to inform the robot of the presence 
of holes and redundant sensors in their neighbors. Therefore, the full ROI coverage 
is not guaranteed. On the other hand, if the distance between reflections is small, 
the relocation process is longer. The robot stops several times to collect informa-
tion already collected. Figure 2 shows an example of the variation of the exit angle: 
Fig. 2a shows the light reflection axes with exit angle = 5◦ , Fig. 2b shows the light 
reflection axes with exit angle = 35◦ and Fig. 2c shows the light reflection axes with 
exit angle = 65◦ . After selecting the appropriate exit angle and point of start, the 
robot follows the trajectory of the axis generated by the law of light reflection. After 
each distance Δ on the axis, the robot communicates with its neighbors to verify the 
existence of holes and redundant sensors. In accordance with its carrying capacity, 
it determines whether it can repair the holes and if it can collect the redundant sen-
sors. If the robot carrying capacity is less than C, it carries the detected redundant 
sensors without exceeding C. As long as the robot is carried with redundant sensors, 
it repairs detected holes. The robot repeats this process after each step Δ . When the 
robot reaches a border, it changes direction with the alpha angle as shown in Fig. 2. 
It starts with a new axis.

5.2 � Algorithm LR‑SR

In this algorithm, the law of large numbers [10, 26] was introduced to permit the 
robot to explore the ROI randomly while trending according to the light reflection 

Fig. 2   Three reflection scenarios with different angles
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law. In contrast to the R-SR algorithm, where the robot simply explores the reflec-
tion axis, the robot in the LR-SR algorithm explores both the light reflection axis 
and its surroundings. Figure 4 shows the exploration of ROI with LR-SR algorithm. 
The goal of exploring around the axis of reflection is to decrease the number of 
reflection axis needed to explore and repair all holes. This will decrease the time 
needed to relocate redundant sensors to cover all holes.

In light reflection, the reflection axes get closer as the robot explores the ROI. The 
reflection axes begin quite far apart, but as the robot explores the area and creates more 
reflection axes, they grow closer together. This is shown in Fig. 3. The LR-SR algorithm 
does not require the reflections to be too close because the robot explores the reflection 
axis and its surroundings, in contrast to the R-SR algorithm where the robot explores 
only the reflection axis. As a result, the LR-SR algorithm is less need for reflection axes 
during the repair process. As the robot explores the ROI step by step, it communicates 
with its neighbors to collect redundant sensors and repairs holes. After the robot repairs 
the detected holes, it moves to the next step. At each step, the robot chooses between 
two directions. For example, if the robot explores an axis which goes from the left bor-
der to the lower border, it decides between walking towards the south or the east from 
its position. The robot selects a probability at random, compares it to two probabilities 
P1 and P2 that match with the two directions. It then chooses the direction with the clos-
est probability to the random probability. The probabilities P1 and P2 are calculated so 
that the robot’s path trends the light reflection axes trajectory. Given the vast and large 

Fig. 3   Reflections’ evolution over time

Fig. 4   Illustrative example of the robot’s random walk



	 Journal of Network and Systems Management (2024) 32:7

1 3

7  Page 10 of 24

size of the ROI, the robot stops several times to choose a probability p and then selects 
an exploration direction. As explained in Sect. 3, when the same experiment is repeated 
a large number of times, the average of the test results should be close to the expected 
result, which is appropriate with this kind of the ROI. The more steps, the more closely 
the robot path’s matches the light reflection axes trajectory as shown by Fig. 4.

The robot is moving according to a path of a random walk in two dimensions where 

its position at time n in noted as 
(
Xn

Yn

)
 . Each coordinate of the robot can be seen as 

random walk in one dimension defined as follows:

where xi and yi are independent random variable for integers i, and both are identi-
cally distributed random variables following one of the following probability mass 
functions:

Or

Or

Or

At case of the above, the robot is following a linear trend is his moving with an ran-
dom zigzag.

Let � is the incident angle and the initial exit angle of the robot from the initial point, 
yi and xi are identical independent distributed random variables as follow:

�
Xn =

∑n

i=1
xi

Yn =
∑n

i=1
yi

P(xi = x) =

{
P1 if x = Δ

1 − P1 if x = 0
and P(yi = y) =

{
1 − P2 if y = 0

P2 if y = Δ

P(xi = x) =

{
P1 if x = −Δ

1 − P1 if x = 0
and P(yi = y) =

{
1 − P2 if y = 0

P2 if y = Δ

P(xi = x) =

{
P1 if x = Δ

1 − P1 if x = 0
and P(yi = y) =

{
1 − P2 if y = 0

P2 if y = −Δ

P(xi = x) =

{
P1 if x = −Δ

1 − P1 if x = 0
and P(yi = y) =

{
1 − P2 if y = 0

P2 if y = −Δ

(
Xn

Yn

)
=

n∑
i=1

��⃗Xi =

n∑
i=1

(
xi
yi

)

tan(�) = lim
n→∞

∑n

i=1
yi∑n

i=1
xi

= lim
n→∞

Yn

Xn

=
P2

P1

,
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where Xn and Yn are the width and the length of the ROI. On the other hand : 
P1 + P2 = 1 , then the two equations were deduced:

From (1) and (2) we deduce that:

Once the probabilities P1 and P2 are calculated, the robot moves step by step. In 
each step, it randomly chooses a probability p in the interval [0, 1]. This probabil-
ity p is compared with P1 and P2 which allows the robot to choose a direction for-
ward to explore the ROI with the principle of reflection using a random walk. The 
robot moves with distance Δ on one of the four directions (north, south, east or west) 
according to the probability p and its previous step. Where Δ is any positive real 
number chosen in terms of ROI size (Length M, wide L), Δ < max(L,M)∕100 . The 
possible cases and rules to decide on the next step are as follows: 

1.	 If the last movement of the robot was from south to north or from left to right 
(Fig. 4a) and p ≤ P1 , then the next step is to move with Δ to right. Else, if p > P1 , 
then the next step is to move to north with Δ as shown by function 3. 

2.	 If the last movement of the robot was from south to north or from right to left 
(Fig. 4b) and p ≤ P1 then the next step is to move to north. Else, if p > P1 then the 
next step is to move to left as shown by Eq. (4). 

(1)tan(�) =
P2

P1

,

(2)P1 + P2 = 1.

P1 =
1

1 + tan(�)
,

P2 =
tan(�)

1 + tan(�)
.

(3)�⃗Xi+1 =

⎧
⎪⎪⎨⎪⎪⎩

�⃗Xi +

�
Δ

0

�
with P1

�⃗Xi +

�
0

Δ

�
with P2

(4)�⃗Xi+1 =

⎧
⎪⎪⎨⎪⎪⎩

�⃗Xi +

�
−Δ

0

�
with P1

�⃗Xi +

�
0

Δ

�
with P2
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3.	 If the last movement of the robot was from north to south or from right to left 
(Fig. 4c) and p ≤ P1 then the next step is to move to south. Else, if p > P1 then the 
next step is to move to left with Δ as shown by Eq. (5). 

4.	 If the last movement of the robot was from north to south or from left to right 
(Fig. 4d) and p ≤ P1 then the next step is to move to south. Else, if p > P1 then the 
next step is to move to right with Δ as shown by Eq. (6). 

This is repeated for each step until the robot reaches one of the borders of the 
ROI. At the border, the robot randomly chooses a new probability p within the 
interval [0,  1] and compares it to the probabilities P1 and P2 . According to the 
robot’s coordinates (x, y) at the border, it decides its next movement direction as 
follow: 

1.	 If x = M , where M is the width of the ROI (i.e., it reaches the right border of the 
ROI), then it applies the rule in Eq. (3).

2.	 If y = L , where L is the length of the ROI, then it applies the rule in Eq. (4).
3.	 If x = 0 , then it applies Eq. (5).
4.	 If y = 0 , then Eq. (6) is applied.

The algorithm terminates when the ROI is fully covered.

Figure 5a shows the ROI initial state after a random deployment of sensors 
and the robot. The example of ROI repair using the R-SR method is shown in 
Fig. 5b, whereas an illustration of reparation using the LR-SR method is shown 
in Fig.  5c. In Fig.  5b, the robot moves on the axes generated by the reflection 
light (represented in the figure by blue lines). However, in Fig.  5c the robot 
moves randomly while its path trends the light reflection axes (the path is repre-
sented by blue lines). According to the Fig. 5b, c, the robot needs 10 reflection 
axes to cover the ROI when using the R-SR algorithm, however with the LR-SR 
method, the robot only needs six reflection axes to cover the same ROI with the 
same starting deployment.
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5.3 � Complexity Analysis

In this subsection, the complexity of the proposed algorithm is analyzed. The com-
plexity of our algorithm can be calculated in a simple way using trigonometric rules. 
Let Cr be the complexity for one round, Nbr number of rounds need to cover the 
ROI and Cg the complexity for all grid. The complexity of the proposed algorithm 
Cg = Cr × Nbr.

In the first step, the complexity for one round (Fig. 4d) was calculated. Let Δ be 
the scale, Δ ∈ R+ and the grid size of the ROI be L ×M . In each round, the robot 
jumps in one of the four directions (up, left, down or right). The complexity of one 

Algorithm 1 R-SR Algorithm

Algorithm 2 LR-SR Algorithm
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round Cr is calculated by adding all jumps in one round, where the number of jumps 
on each direction is:

•	 Number of jump in ↑∶ L

Δ
.

•	 Number of jump in ←∶
M

Δ
.

•	 Number of jump in ↓∶ L

Δ
.

•	 Number of jump in →∶
M

Δ
.

In the second step, the number of rounds needs to cover all grid Nbr was calculated 
as follow:

Cr =
2(L +M)

Δ
=

perimeter of the grid

Δ
.

Algorithm 3 Reparation Algorithm

Fig. 5   Illustrative example of the two algorithms
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Finally, the complexity to cover the entire grid was calculated as follow:

6 � Performance Evaluation

As mentioned previously, distributed carrier-based sensor relocation algorithms 
were proposed, where sensors are deployed by aircraft/helicopter airdrops. The com-
parison of the proposed algorithms with two other algorithms from the literature 
was done: LRV algorithm, since this exploration technique was used by many dis-
tributed solutions to the carrier-based sensor problem [6, 14, 15]. The second algo-
rithm CB-SD [21] which is a recent solution to the relocation problem. To do so, 
the performances of all these algorithms (i.e., the proposed algorithms, LRV and 
CB-SD) were evaluated, by varying the exit angle and the coverage ratio while fix-
ing the ROI surface to 1080 × 1080 , the robot’s step Δ to 4 × Rs the robot’s carrying 
capacity to 8. We then varied the carrying capacity and the ROI surface while fixing 
the exit reflection angle to 35◦ . Our simulator was developed using Python. Initially, 
sensors are randomly deployed on a two-dimensional plane. The initial coverage 
ratio is equal to 65% which is increased gradually. To evaluate our algorithms, the 
following performance metrics were used :

•	 The relocation time (Tr): is the time required for the relocation of the redun-
dant sensors in the detected coverage holes to increase the initial coverage rate to 
achieve 99%.

•	 The coverage rate (Tc): the percentage of the area covered by at least one sensor 
over the entire area of ROI.

•	 Average distance traveled by the robot (Dm): displacement distance average of 
the robot during the simulation (exploration and repair).

6.1 � Experiment 1: The Relocation Time Versus Delta

In the first experiment, the relocation time of the four algorithms was evaluated by 
varying the length of the robot’s step ( Δ).

As shown in Fig. 6, the larger the robot’s step ( Δ ), the more the relocation time 
decreases, until Δ reaches an optimal step of 4 × rs . Beyond this step, relocation 
time increases. This is explained by the fact that in the four algorithms the robot 
stops after each step to collect redundant sensors and/or to repair holes (LRV, 
LR-SR, R-SR) or to collect information (CB-SD) in its communication radius. 
The amount of repeat information on redundant sensors and holes increases when 
the step decreases below RC. As noted, LR-SR and R-SR algorithms give better 

Nbr =
L

cos(�)2Δ
.

Cg = O

(
2(L +M)

Δ

L

cos(�)2Δ

)
= O

(
(L +M)L

Δ2cos(�)

)
.
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results than the other two algorithms. This is explained by the fact that in CB-SR 
the robot must first explore the full ROI before starting repairing. In the LRV 
algorithm, the robot revisits the same zone several times, unlike our solutions 
where the principle of light reflection makes it possible to repair the ROI holes 
by walking randomly around a few light reflection axes with Δ equal to 4 × Rs . 
The random walk allowed the robot to reduce the relocation time by more than 
19% (from 117.1 to 95.19 s) compared to the time taken by the walk following 
the light reflection. The introduction of random walk around the axis allows the 
robot to explore not only the axis but also its surroundings in a single pass. This 
reduces the total relocation time and confirms our choice of using a random walk 
around the axis generated by light reflection in our solution (LR-SR).

6.2 � Experiment 2: The Relocation Time Versus the Reflection Exit Angle

In the second experiment, the relocation time of our two algorithms was evaluated 
by varying the reflection exit angle.

The histogram in Fig.7 shows the impact of varying exit angles on the relocation 
time. The angle 5◦ is the worst case with a relocation time equal to 156,32 s with 
LR-SR and 136.89 s with R-SR. While the relocation time produced by other angles 
varies between 120.50 and 127.45 s. The exit reflection angle 35◦ gives the best relo-
cation time which is equal to 117.1 s with R-SR and 95.19 s with LR-SR. By adopt-
ing the light reflection principle, the robot divides the ROI into sub-areas. In LR-SR, 
the robot explores these sub-areas following a random walk around the axes gener-
ated by this principle, to detect coverage holes and redundant sensors in a radius 
Rc from the axis. In R-SR, the robot explores only the axes. With the angle 35◦ , the 
ROI is divided in an optimal way. The rate of overlap of one axis exploration with 
the next is optimal. Unlike the very small angles which bring the reflection axes 
closer together. Consequently, it leads to slow exploration since the robot explores 
almost the same subareas of the two axes. Especially in the LR-SR solution, where 
the robot explores the surroundings of the axis, this takes more time than the R-SR 
algorithm.

Fig. 6   Impact of variation of Δ 
on relocation time
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6.3 � Experiment 3: The Relocation Time, Messages Cost and Robot Average Moves 
Versus the ROI Surface

In the third experiment, the relocation time and the robot average moves of the four 
algorithms was evaluated by varying the ROI surface.

From Figs. 8, 9 and 10, it is clear that the larger the surface, the greater the dif-
ference between the solutions. This means that LRV and CB-SD are not adapted 
to large areas. Even if R-SR gives better results than LRV and CB-SD, the LR-SR 
approach is the most effective compared to other approaches and keeps an almost 
linear increase in relocation time, messages cost and robot average moves. As 
a result of the unnecessary (redundant) movements of LRV, the robot re-explores 
an area already explored instead of going to new areas that have not been explored 
before. In the CB-SD, the robot explores the ROI first to collect the positions of 
redundant sensors and holes before starting the repair process. First steps in large 
areas take time, so relocation times, message costs, and robot average moves 
increase due to the increased robot average moves. The R-SR method explores the 

Fig. 7   Impact of variation of 
reflection exit angle on reloca-
tion time

Fig. 8   Impact of variation of 
ROI surface on the messages 
cost
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ROI and repairs holes following the light reflection axes. However, LR-SR explores 
and repairs holes surrounding the axes which allows the robot to repair more holes 
in one pass. Since random deployment of sensors was involved, this means that the 
application in question takes place in a large area. Our solution is better suited to 
this type of application.

6.4 � Experiment 4: The Relocation Time Versus Coverage Ratio

In the fourth experiment, the relocation time of the four algorithms was evaluated by 
varying final coverage ratio.

As shown by Fig.  11, the relocation time required for our solution (LR-SR) to 
achieve any coverage rate is much smaller than the time required for LRV, CB-SD 
and R-SR to reach that same rate. As explained above, the robot in LRV is subject 
to search loops. In CB-SR the robot explores first the ROI to discover the positions 
of redundant sensors and holes and due to the size of ROI, it will take more time. 
Our solutions (R-SR and LR-SR), work differently. The robot repairs the holes with 
the redundant sensors collected during the ROI exploration. The fact that in LR-SR 
the robot discovers the surroundings of the reflection axis instead of discovering 
only the axis like in R-SD, implies that the robot in LR-SD detects more holes and 

Fig. 9   Impact of variation of ROI surface on the relocation time

Fig. 10   Impact of variation of 
ROI surface on robot average 
moves
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redundant sensors in a single pass. This explains why LR-SR gives better results 
than R-SR.

6.5 � Experiment 5: The Relocation Time Versus Carrying Capacity of the Robot

In the fifth experiment, the relocation time of the four algorithms was evaluated by 
varying the carrying capacity of the robot.

As shown in Fig.12, in all four algorithms, as the robot carrier capacity increases, 
the relocation time decreases to reach a coverage rate equal to 99% . The increased 
carrying capacity of the robot allows it to carry several sensors at once, and thus to 
repair large coverage holes without searching for other redundant sensors. As previ-
ously stated, the robot’s exploration of the ROI and reparation process enables our 
algorithm to provide the best time relocation when compared to other algorithms.

Fig. 11   Impact of variation of 
coverage ratio on relocation 
time

Fig. 12   Impact of variation of 
carrying capacity of the robot on 
relocation time
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6.6 � Experiment 6: Impact of the Presence of Obstacles on LR‑SR Algorithm

The sixth experiment focuses on assessing the influence of obstacles within the ROI, 
as shown in Fig. 13a, on the LR-SR algorithm. The relocation time of the LR-SR 
algorithm in both scenarios with and without obstacles was assessed by varying the 
ROI’s surface.

The LR-SR algorithm ensures maximal coverage even in the presence of obsta-
cles, as demonstrated in Fig. 13b. Relocation time increases with ROI surface size 
regardless of the presence or absence of obstacles in the ROI. This is explained by 
the fact that the robot must spend more time addressing all of the holes within a 
region of interest as the surface area increases. Additionally, the obstacles in the ROI 
also increases relocation time. This is due to the fact that the robot has to re-route 
its path to avoid obstacles in the environment. As a result, relocation time increases.

7 � Conclusion

In this paper, a localized algorithm was designed to solve the carrier-based sensors 
relocation problem. First a basic solution R-SR was proposed which is based on the 
light reflection principle. The light reflection allows the robot to have a general view 
of the network concerning the holes and the redundant sensors in just a few reflec-
tion axes. Therefore, the relocation process is more efficient in terms of distance 
traveled by the robot and relocation time. To optimize the distance and relocation 
time, the LR-SR algorithm was proposed. To allow the robot to repair more holes 
on one pass, the law of large numbers was integrated with the reflection light law. 
In LR-SR, the robot even explores the surroundings of the reflection axes instead 

Fig. 13   Impact of the presence of obstacles on LR-SR algorithm
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of exploring the axes only as in the R-SR algorithm. The simulation results showed 
that the LR-SR algorithm yields the highest performance in detecting holes in a 
short period of time comparing with other techniques. The LR-SR algorithm can be 
improved by optimizing holes reparation in each step. In future work, multi robots 
version will be considered.
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