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A B S T R A C T

Our study addresses the challenge of imbalanced regression data in Machine Learning (ML) by introducing
tailored methods for different data structures. We adapt K-Nearest Neighbor Oversampling-Regression (KNNOR-
Reg), originally for imbalanced classification, to address imbalanced regression in low population datasets,
evolving to KNNOR-Deep Regression (KNNOR-DeepReg) for high-population datasets. For tabular data, we also
present the Auto-Inflater neural network, utilizing an exponential loss function for Autoencoders. For image
datasets, we employ Multi-Level Autoencoders, consisting of Convolutional and Fully Connected Autoencoders.
For such high-dimension data our approach outperforms the Synthetic Minority Oversampling Technique
for Regression (SMOTER) algorithm for the IMDB-WIKI and AgeDB image datasets. For tabular data we
conducted a comprehensive experiment using various models trained on both augmented and non-augmented
datasets, followed by performance comparisons on test data. The outcomes revealed a positive impact of data
augmentation, with a success rate of 83.75% for Light Gradient Boosting Method (LightGBM) and 71.57% for
the 18 other regressors employed in the study. This success rate is determined by the frequency of instances
where models performed better when augmented data was used compared to instances with no augmentation.
Access to the comparative code can be found in GitHub.
1. Introduction

The effectiveness of conventional machine learning (ML) techniques
greatly depends on the underlying data distribution they are trained
on. In scenarios involving classification or regression, a model trained
on an imbalanced dataset can exhibit a bias towards the majority
class (Gan, Shen, An, Xu, & Liu, 2020; Liu et al., 2018). This may result
in seemingly high accuracy, while minority data points are frequently
misclassified or mispredicted. Such a scenario can compromise the de-
pendability of ML models, especially in critical domains like healthcare
and finance, where rare, malignant, or suspicious data can hold sub-
stantial consequences. Recognizing a dataset as imbalanced depends on
the specific problem, as illustrated in Fig. 1. This variability highlights
the critical need to actively address data imbalance during machine
learning model training. Neglecting this aspect can lead to skewed
results and compromised model reliability, particularly in critical do-
mains like healthcare and finance, where accurate predictions for rare
or suspicious cases are crucial. Thus, acknowledging and mitigating
data imbalance stands as a vital step in ensuring the robustness and
effectiveness of machine learning applications.
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In machine learning, models trained on imbalanced datasets can
exhibit a bias towards the majority class, which can impact the reli-
ability of predictions in critical areas such as healthcare and finance.
Imbalanced datasets can be found in both classification and regression
problems (Fernández et al., 2018). In classification, an imbalanced
dataset can have a disproportionate representation of categories, with
some categories having fewer samples than others, creating an im-
balanced binary or multi-class problem. Binary classification is the
primary focus of research in imbalanced learning, but imbalanced
data can also arise in regression tasks (Sun, Wong, & Kamel, 2009).
In regression, the dependent variable is a continuous value, and the
imbalance occurs when a specific interval of the target variable has a
reduced representation in the dataset (Branco, Torgo, & Ribeiro, 2016).
The imbalanced regression problem is challenging as it requires the
model not only to create artificial minority points but also to predict the
dependent value for each new data point. Oversampling is a common
technique used to address this problem. Fig. 2 illustrates oversampling
in imbalanced regression problems, where the target values are used
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Fig. 1. Types of Imbalance. In this paper we are focusing on the continuous data sets
where the target values are skewed to one side.

Fig. 2. Oversampling regression on Imbalanced data. a. Imbalanced data set. b.
Dependent value distribution. The values in green correspond to the majority values,
while the red bars represent the frequency of the values on the minority dataset. The
process of augmentation has two parts. c Adding more data points to the minority set.
d. Setting target values corresponding to the newly created features. The blue section
of the histogram in d shows the increased frequency of values between 0.5 and 0.6
due to the creation of new data points and corresponding target values.

to identify minority data points. The imbalanced regression dataset
is visually depicted in Fig. 2a, where the majority and minority data
points are represented in green and red, respectively. A histogram in
Fig. 2b displays the distribution of dependent values, where the green
bars represent the majority values, and the red bars indicate the fre-
quency of minority values. Typically, the identification of imbalanced
regression data begins with examining the target values and labeling
the corresponding data points as minority.

In Fig. 2b, the histogram illustrates that target values falling within
the range of 0 to 0.5 (highlighted in green) exhibit a higher frequency
compared to the range from 0.5 to 0.6 (highlighted in red), which
displays a lower frequency. Fig. 2a represents the independent vari-
ables, primarily constituting the majority dataset depicted in green,
whereas the minority dataset is represented by red scatter points in
Fig. 2a. Notably, these red scatter points correspond to the red segment
of the histogram in Fig. 2b. The process of augmentation yields two key
outcomes. The first outcome involves generating additional data points
that resemble those in the minority dataset, symbolized by the blue
points in Fig. 2c. The second outcome encompasses the target values
linked to these newly generated data points, as depicted in the blue
section of the histogram in Fig. 2d. This augmentation process serves
to augment the frequency of values falling within the 0.5 to 0.6 range.
2

Fig. 3. Domain and Co-Domain relationship in imbalanced regression. The non-ordered
set of features is represented on the left. The right side shows the histogram of the
target values, increasing vertically upwards. As the regression relationship between the
features is unknown, we need first to generate new examples of features, ensuring
that it represents the minority data set. Then we compute the possible target value
corresponding to the newly created feature.

Fig. 4. Different approaches presented in this paper according to the type of dataset
under scrutiny. Regarding Tabular data, we offer different methods depending on the
population and number of features. We propose KNNOR-Regression (Section 3.2) for
low population data. For data with a high population, we advocate KNNOR Deep
Regression which has two flavors. For high-population data with a high number of
features, we use Target Aware Autoencoders (Section 3.3.1), and for high-population
data with a low number of features, we use AutoInflaters (Section 3.3.2). Finally,
for Image datasets, we use a combination of Convolution and Fully Connected
Autoencoders called Multi-Level Autoencoders (Section 3.4). We define high population
data in terms of its volume wherein the entire data cannot be stored in a single
machine (Juez-Gil, Arnaiz-González, Rodríguez, & García-Osorio, 2021).

The process is further explained in Fig. 3, where a domain-range rela-
tionship is depicted. The left side shows the non-ordered set of features
𝑋̂, while the target values 𝑦 are represented on the right in increasing
order of their frequencies. The research question is to generate a new
representation of 𝑋̂ that increases the representation of the minority
dataset, and then map the new X-value to a y-value that falls within
the range of lower frequencies. This requires an approximation of the
regression algorithm only for the minority or rare data, achieved by
creating specialized functions using simple statistical methods as well
as deep neural networks, which are elaborated on in the following
pages.

The imbalanced regression problem is apparent in many real-world
tasks like medical applications where the different health metrics like
blood pressure, heart rate, and Oxygen saturation are continuous,
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and their distribution is often skewed across the patient population.
Other industries like finance, meteorology, and fault diagnosis are also
plagued with imbalanced regression problems (Krawczyk, 2016). This
article proposes several novel methods of oversampling Imbalanced Re-
gression Data. The advantages of the proposed techniques in this study,
when compared to those identified in the existing literature, can be
summarized as follows: Firstly, we extend the K Nearest Neighbor Over-
sampling (KNNOR) method (Islam, Belhaouari, Rehman, & Bensmail,
2022b) to KNNOR-Regression (KNNOR-Reg), enabling the generation
of target values for imbalanced regression problems. Additionally, we
expand upon Class Aware Autoencoders by introducing Target Aware
Auto Encoders, which are designed for estimating target values for
new features. We also introduce a novel architecture known as Target
Aware AutoInflaters, serving to extract features from low-dimensional
data. Furthermore, our study involves the development of Multi-level
Auto Encoders, which are adept at extracting features from images
and generating new features and target values. To enhance prediction
accuracy, we employ an exponential loss function within the AutoIn-
flater, effectively highlighting the differences between predicted and
actual target values. Lastly, our approach incorporates the use of the
maximum test target value as a normalizer for calculating regression
loss, providing a comprehensive and effective framework for addressing
the identified challenges.

The contributions of this paper are summarized as below.

• Extending the KNNOR method to KNNOR-Regression (KNNOR-
Reg) to generate target values for imbalanced regression problems
(see Section 3.2);

• Extending Class Aware Autoencoders to Target Aware Auto En-
coders for estimating target values for new features (see Sec-
tion 3.3.1);

• Introducing a novel architecture called Target Aware AutoIn-
flaters to extract features from low dimensional data (see Sec-
tion 3.3);

• Developing Multi-level Auto Encoders for extracting features from
images and creating new features and target values (see Sec-
tion 3.4);

• Using an exponential loss function within the AutoInflater to bet-
ter highlight the difference between predicted and actual target
values (see Section 3.3.3);

• Calculating regression loss using the maximum test target value
as a normalizer (see Section 4.1.1).

The paper is structured as follows: In Section 2, we introduce the
issue of imbalanced linear regression, explain its significance, and
provide a review of existing literature on the subject. In Section 3, we
present our solutions to address this problem, which are categorized
into two frameworks based on dataset size. For smaller datasets, we
introduce an extended version of KNNOR, while for larger datasets,
we propose a novel AutoEncoders implementation. Fig. 4 offers an
overview of our proposed methods, organized by data type and struc-
ture. For tabular data, we propose different methods, such as KN-
NOR Regression (Section 3.2) and KNNOR DeepRegression with target-
aware Auto Encoders/Inflaters (Sections 3.3.1 and 3.3.2), depending
on dataset size and feature count. In the case of image datasets, we
suggest a Multi-Level AutoEncoder scheme (Section 3.4). In Section 4,
we outline the experimental design, where we assess the effectiveness
of our methods on well-known imbalanced regression datasets and
present the results and subsequent discussion. Section 5 encompasses
the conclusion and outlines future work based on the results.

2. Presentation of the problem and related work

In this section, we begin by introducing the concept of imbalanced
linear regression, elucidating its importance, and conducting a compre-
hensive examination of the existing body of literature pertaining to this
3

topic. i
2.1. Problem description

In a standard regression problem, the goal is to predict continuous
values based on a set of examples and their corresponding target
values. However, in the case of an imbalanced regression problem, the
data distribution may be skewed, with only a few examples having
target values within a specific range of interest, while the majority of
examples have target values in a different range. This imbalance can
result in a biased model that tends to predict values within the range of
the majority data. This bias occurs because most regression algorithms
are designed to minimize the average error across all data points (Gan
et al., 2020; Liu et al., 2018). As a consequence, the model’s accuracy is
typically higher for the majority class but lower for the minority class.
This can be misleading when assessing the overall model accuracy. In
fact, a classifier or regressor may predict the entire dataset to belong
to the majority class or within the majority range, thus getting the
minority class or rare data wrong, while still achieving a seemingly high
accuracy due to the averaging effect. This phenomenon is important
to consider when evaluating the performance of models in imbalanced
regression scenarios (Fernández et al., 2018; Gan et al., 2020; Liu et al.,
2018).

In the context of imbalanced regression, it is necessary to define
the relevant terms. Let 𝐷 =

{(

𝐱𝑖, 𝑦𝑖
)}𝑁

𝑖=1 denote the set of training
ata, where 𝐱𝑖 ∈ R𝑑 represents the input features and 𝑦𝑖 ∈ R repre-
ents the dependent value, which is continuous in nature. To further
haracterize the dependent value space, Branco, Torgo, and Ribeiro
2019) introduce a threshold value 𝑡𝑟 that divides the dataset into two
omplementary sets: the common data, represented by 𝐷𝑁 , and the
are data, denoted by 𝐷𝑅, where |𝑦𝑖| < 𝑡𝑟 indicates rare data and
𝑦𝑖| ≥ 𝑡𝑟 indicates common data. The imbalanced regression problem
rises when the following conditions hold:

• Accurate prediction of 𝐷𝑅 is more crucial for determining the
performance of the model;

• 𝐷𝑅 ≪ 𝐷𝑁 , where 𝐷𝑅 and 𝐷𝑁 represent the cardinalities of the
rare and common datasets, respectively.

Minority and Majority in Continuous data
In contrast to classification problems, labeling in regression prob-

ems can be more complex since the focus is on identifying rare
vents or valuable data points, such as fraudulent transactions, highly
rofitable stock market actions, or ecological catastrophes. Therefore,
he identification of minority data points is of utmost importance.
owever, it is also essential to consider that misclassifications can have
ifferent costs. To address this, the utility theory is used to define a
elevance function that assigns importance to each target value (Torgo

Ribeiro, 2007). The relevance function is a continuous, real-valued
unction that is dependent on the domain and maps each target value
o a relevance scale. Eq. (1) defines a relevance function that takes into
ccount the application-specific bias and maps each target value to a
ontinuous scale of relevance ranging from 0 to 1, where 0 indicates
inimum and 1 indicates maximum importance.

(𝑌 ) ∶  → [0, 1] (1)

To obtain the relevance function, we use the box and whisker plot
f the target value, where the median value is assigned an importance
alue of 0 and the upper adjacent and all higher values are assigned an
mportance value of 1. Similarly, all lower adjacent values are assigned
n importance value of 1. To interpolate between these importance val-
es and obtain a smooth relevance function, we use a piece-wise cubic
ermite interpolation method (Camacho, Douzas, & Bacao, 2022).

The relevance values, calculated using the same method, are illus-
rated in Fig. 5. In Fig. 5a, the histogram represents the target values
f the compactiv dataset, with the corresponding relevance values
epicted below. Notably, there is a correlation between the relevance
alues and the frequency of the target values. The gap in the histogram

s responsible for the discontinuity in the plot. Moving to Fig. 5b, it
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Fig. 5. Relevance function for the a. compactiv and b.bank8FM data set. Figure a displays a histogram depicting the distribution of target values within the compactiv dataset,
with the corresponding relevance values presented below. It is worth noting that there is a noticeable correlation between these relevance values and the frequency of target
values. The interruptions in the plot can be attributed to gaps within the histogram. Figure b shows the histogram for the bank8FM dataset, along with the associated relevance
values displayed below it.
shows the histogram for the bank8FM dataset, along with the associated
relevance values displayed beneath it. It is worth mentioning that
the positioning of the extremes is a crucial factor in determining the
relevance function. In this exercise, we considered datasets with either
high (Fig. 5b) or low (Fig. 5a) extremes but not both. The red and
blue sections in the lower half of the figure are also of significance.
The threshold of importance is manually defined, with target values
above this threshold considered critical. We adhere to established
practices (Camacho et al., 2022; Torgo & Ribeiro, 2007) to partition
the data into two subsets: 𝐷𝑁 and 𝐷𝑅. For each dataset, a user-defined
coefficient is employed to determine the extent to which the whiskers
extend from the interquartile range in the box plot of the dependent
data. This threshold plays a pivotal role in segregating the data into
rare (𝐷𝑅) and common (𝐷𝑁 ) subsets. We rely on the methodology
proposed by Camacho et al. (2022) to derive these thresholds. Once the
data has been categorized into these two segments, our algorithm can
be applied. However, before delving into the specifics of our proposed
methods, it is essential to review recent work in the field of imbalanced
regression.

2.2. Literature review

In a comprehensive exploration of machine learning applications,
particular emphasis is placed on addressing imbalanced data aug-
mentation challenges. One study investigates the use of augmentation
techniques to balance data, especially in the context of carbon oxides
(CO) and nitrogen oxides (NOx) emissions prediction from a gas tur-
bine (dos Santos Coelho, Hultmann Ayala, & Cocco Mariani, 2024). The
research unveils the importance of hyperparameter tuning and feature
engineering, particularly with the Deep Forest Regression (DFR) model,
in enhancing predictive accuracy for these emissions. Additionally, the
study delves into the small punch test (SPT) and employs machine
learning to establish the correlation between SPT forces and material
4

Fig. 6. SMOTE — the fundamental augmentation algorithm. 𝑥𝑛𝑒𝑤𝑖 is the generated point
at a random distance between 𝑥𝑖 and 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑖 .

properties, offering new insights into predicting material tensile prop-
erties using SPT (Zhong, He, Guan, & Jiang, 2023). In a soil-related
investigation, machine learning algorithms are harnessed to estimate
soil properties, with artificial neural networks (ANN) emerging as the
most effective predictor (Tunçay, Alaboz, Dengiz, & Başkan, 2023).
These studies collectively underscore the significance of machine learn-
ing in addressing imbalanced data challenges and optimizing predictive
capabilities across diverse domains.

In the realm of addressing imbalanced data in classification, par-
ticularly in the context of oversampling, there are primarily three
fundamental approaches. These approaches are aimed at mitigating
imbalanced data issues, particularly when dealing with classification
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,

Fig. 7. Application of SMOTER to generate new point as well as target value.

problems: (1) Data-Driven Techniques, as described by Laza, Pavón,
Reboiro-Jato, and Fdez-Riverola (2011), involves sampling-based meth-
ods that focus on adjusting the distribution of each category within
the dataset. Data-driven techniques are more universally applicable
and widely employed due to their adaptability and effectiveness; (2)
Algorithm-Based Methods, as exemplified by Elhassan and Aljurf (2016)
Kubat et al. (1997), Thanathamathee and Lursinsap (2013), entail mod-
ifications to the training algorithms used in the classification process.
These adjustments are specific to the classifiers employed and may not
be as common as data-driven techniques. However, they can prove to
be highly effective in specific cases; (3) Hybrid Approaches, as proposed
by Johnson and Khoshgoftaar (2019), combines elements of both data-
driven and algorithm-based techniques. This approach seeks to leverage
the advantages of each method and is gaining attention for its potential
to deliver comprehensive solutions to imbalanced data challenges.

The choice of which approach to employ depends on the spe-
cific characteristics of the dataset and the problem at hand. Data-
driven techniques are often favored for their broad applicability, but
algorithm-based methods and hybrid approaches can be valuable in
situations where tailored adjustments to classification algorithms are
required. Data-driven techniques for handling imbalanced classification
problems often use oversampling or undersampling methods (He & Gar-
cia, 2009; Liu, Wu, & Zhou, 2008). A more intelligent approach is Syn-
thetic Minority Oversampling Technique (SMOTE) (Chawla, Bowyer,
Hall, & Kegelmeyer, 2002), which creates new data points belonging
to the minority class by using existing minority data. As illustrated
in Fig. 6, this algorithm selects a random minority point and places a
new one at a random distance between the chosen point and one of its
closest neighbors. Mathematically, SMOTE generates an artificial point
𝑥𝑛𝑒𝑤𝑖 according to Eq. (2):

𝑥𝑛𝑒𝑤𝑖 = 𝑥𝑖 + (𝑥𝑖 − 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑖 ) ∗ 𝛼𝑖 (2)

where 𝑥𝑖 is a minority data point, its nearest neighbor of same class
is 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑖 and 𝛼𝑖 is independent and identically distributed number
uniformly distributed on [0, 1].

2.2.1. SMOTE based imbalanced regression
A fundamental solution to address imbalanced regression is the use

of random under-sampling and Synthetic Minority Oversampling Tech-
nique for Regression (SMOTER) (Torgo, Branco, Ribeiro, & Pfahringer,
2015). Under-sampling involves randomly selecting data points with
relevance values below a specified threshold and removing them from
the dataset. SMOTER is an extension of SMOTE (Chawla et al., 2002)
that generates new data points for the minority class by using existing
5

data. As shown in Fig. 6, the algorithm first selects a random minority
Fig. 8. Simulated dataset — before augmentation. 𝑝0 is the source point from where
augmentation will start. 𝑝1, 𝑝2 and 𝑝3 are its 3 nearest neighbors in increasing order
of distance.

point and then places a new point at a random distance between the
chosen point and one of its closest neighbors. SMOTER then calculates
the possible target value for the new point based on its distance to
its parent points, as illustrated in Fig. 7. The new target value 𝑦𝑛𝑒𝑤𝑖 is
computed using Eq. (3):

𝑦𝑛𝑒𝑤𝑖 =

𝑦𝑖
𝑑1

+
𝑦𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑖

𝑑2
1
𝑑1

+ 1
𝑑2

(3)

where, 𝑦𝑖 is the target value of the 𝑥𝑖 data point. Its nearest neighbor is
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 whose target value is 𝑦𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑖 . The target value of the generated
point 𝑥𝑛𝑒𝑤𝑖 is proportional to the euclidean distance of the new point
from the parent points. Branco et al. (2019) propose three approaches
to address imbalanced datasets: random oversampling, the introduction
of Gaussian Noise, and WERCS. Random oversampling involves creat-
ing copies of the rare class data points to add balance to the dataset.
Gaussian Noise is used to introduce small variations in the feature set
and target values to generate new data points with dependent values.
The WERCS technique combines over and undersampling by assigning
a probability of duplication or deletion based on the relevance value of
each data point, determined by a user-defined threshold. More recently,
the Geometric SMOTE (G-SMOTE) (Douzas & Bacao, 2019) approach
has been used in regression (Camacho et al., 2022). In G-SMOTE, data
points are classified as rare or common based on the target value, and
new data points are generated using the G-SMOTE method. The label of
the new data point is the weighted average of the target values of the
two instances used to create the new point (Camacho et al., 2022). In
this paper, we use a recently published approach that enhances SMOTE
with the KNNOR approach (Islam et al., 2022b). The KNNOR algorithm
combines SMOTE with KNN to generate new synthetic data points
and addresses the issue of the oversampling of noisy and ambiguous
instances.

2.2.2. K Nearest Neighbor OveRsampling approach (KNNOR)
The KNNOR has been proposed as a solution to the challenge of

class imbalance in classification tasks. Compared to the popular SMOTE
algorithm, KNNOR addresses issues such as noisy data, small disjuncts,
and within-class imbalances, as demonstrated by Islam and Belhaouari
(2021). One of the key features of KNNOR is its novel filtering method,
which helps to identify minority data points that better represent the
population.

To generate new synthetic data points, KNNOR uses multiple near-
est neighbor points of these crucial minority points. The process of
creating an artificial data point begins by selecting one of the crucial
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Fig. 9. The iterative process of creation of an augmented point 𝑚2 with the help of
three neighbors (𝑝1, 𝑝2 and 𝑝3), starting with 𝑝0.

Fig. 10. Auto Encoder Block Diagram.

minority points, denoted as 𝑥0, and repeating the following steps for
each of its k nearest neighbors:

• generate a random point on a line between the start point and the
next closest neighbor;

• make the point generated as the start point.

Fig. 8 shows an artificial imbalanced dataset and Fig. 9 gives a
pictorial representation of the process of augmentation using three
neighboring points. In a general case where k neighbors are used
to create an artificial point, the process can be represented by the
following.

∀𝑖 ∈ [0, 1...𝑘] the sequence is defined using Eq. (4):

𝑥𝑛𝑒𝑤𝑖+1 = 𝑥𝑛𝑒𝑤𝑖 + (𝑝𝑖 − 𝑥𝑛𝑒𝑤𝑖 ) ∗ 𝛼𝑖 (4)

where 𝑥𝑛𝑒𝑤0 is any safe point in the minority class, 𝑝𝑖 is the ith nearest
neighbor of 𝑥𝑛𝑒𝑤0 and 𝛼𝑖 is uniform random variables over [0,𝑀], where
𝑀 is any positive value less than 1.

At each iteration of the process, the new point generated at the
preceding step becomes the starting point. A new point is synthesized
at a distance 𝑟𝑎𝑛𝑑𝑜𝑚(0,𝑀) on the straight line joining the starting
point and the (𝑖 + 1)𝑡ℎ nearest neighbor of the origin point that started
the exercise. The synthetic point obtained after the last iteration is
considered the new augmented data point for the entire process.

2.2.3. Deep learning in imbalanced regression
In addition to statistical techniques, this paper proposes a deep

learning approach, which is crucial to understanding imbalanced re-
gression using deep neural networks. Neural networks are particularly
useful for high-dimensional datasets, such as images, and have been
6

successfully applied in various areas, such as age detection from facial
images, weather prediction, electricity consumption estimation, and
autonomous vehicle trajectory projection, where rare data is present
at the extremes. Recent research in imbalanced regression using deep
neural networks has resulted in notable works, such as Label and
Feature Distribution Smoothing (LDS and FDS, respectively) (Yang,
Zha, Chen, Wang, & Katabi, 2021), where different kernel functions are
applied to the labels and features to create a more balanced data dis-
tribution. To improve performance, the loss functions are re-weighted
by multiplying them with the inverse of the estimated LDS. A recent
study by Sharan et al. (2023) focuses on the domain of probabilistic
forecasting, addressing the challenge of predicting long-tailed rare data,
as discussed by Menon (2020). The authors of this study introduce
novel concepts related to moment-based tailedness measurements to
improve predictions. They propose two loss functions: the Kurtosis loss,
which assesses the fourth moment around the distribution mean and is
symmetric, and the Pareto loss, which evaluates the right-tailedness of
the distribution and is asymmetric. Notably, this paper stands out for
its innovative approach, as it combines deep learning and statistical
methods to create artificial samples with precise target values. To
achieve this, the authors extend the capabilities of a specialized neural
network model known as AutoEncoders, which is employed to extract
relevant features and generate accurate target values.

2.2.4. AutoEncoders
Autoencoder neural networks have the ability to generate output

features that match the input features. They are composed of three
main components: the encoder, the bottleneck, and the decoder (Ri-
fai, Vincent, Muller, Glorot, & Bengio, 2011). Due to their common
usage in image data, autoencoders typically have high-dimensional
input features that are reduced to the bottleneck size by the en-
coder. The decoder is then trained to reconstruct the initial output
by minimizing a cost function. Fig. 10 provides a block diagram of
an autoencoder that includes the Encoder, Bottleneck, and Decoder.
Autoencoders can be fully connected or can include Convolution and
De-convolution layers (Zeiler, Krishnan, Taylor, & Fergus, 2010), with
the bottleneck typically being a fully connected layer that extracts
a one-dimensional feature representation. Autoencoders are used to
reduce high-dimensional datasets like images, making them more suit-
able for statistical methods (Wang, Yao, & Zhao, 2016). This work
employs an innovative form of autoencoder known as the Class-Aware
Autoencoder (Islam, Belhaouari, Rehman, & Bensmail, 2022a), which
is further explained below.

Class Aware AutoEncoders
Autoencoders aim to minimize the difference between input and

output data. However, class-aware autoencoders take this a step further
by incorporating the class label information into the output data. This
means that the output of the class-aware Autoencoder includes both a
close approximation of the input feature set and the corresponding class
label (Islam et al., 2022a). Fig. 11 illustrates the concept of a class-
aware Autoencoder. To match the dimensions, a random or constant
feature is added to the input data, and the output is then matched with
the actual class label. This approach has been primarily used in labeled
datasets for classification tasks. However, it can also be extended to
regression data and applied to predict the target value for new data
points by modifying the loss function, as described in Section 3.3.1.

3. Material and methods

In this section, we outline our strategies for addressing this is-
sue, which are classified into two frameworks based on dataset size.
For smaller datasets, we introduce an extended version of KNNOR,
while for larger datasets, we propose a novel AutoEncoders imple-
mentation. Fig. 4 provides an overview of our proposed methods,
categorized by data type and structure. Regarding tabular data, we
propose various methods, including KNNOR Regression (Section 3.2)
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Fig. 11. Class Aware Auto Encoder.
and KNNOR DeepRegression with target-aware AutoEncoders/Inflaters
(Sections 3.3.1 and 3.3.2), depending on dataset size and feature count.
For image datasets, we recommend a Multi-Level AutoEncoder scheme
(Section 3.4).

3.1. Methods

This paper introduces three innovative techniques for creating tar-
get variables that cater to the structure and size of the dataset.

• Method 1 (For low population data): We propose the KNNOR
approach with an additional step of calculating the target vari-
able, which we refer to as KNNOR-Regression (or KNNOR-Reg)
in Section 3.2.

• Method 2 (For high-population data): We present KNNOR Deep
Regression or KNNOR-DeepReg, which has two variations:

– Method 2a (For high-population and high-dimensional data):
Combination of KNNOR with Target Aware AutoEncoder
(Section 3.3.1).

– Method 2b (For high-population and low-dimensional data):
Combination of KNNOR with Target Aware AutoInflater
(Section 3.3.2).

• Method 3 (For image data): We propose a Multi-Level AutoEn-
coder scheme for imbalanced image regression problems, which
we discuss in Section 3.4.

3.2. KNNOR - Regression (KNNOR-Reg) - [Low population data]

The approach described in 2.2.2 expands on the KNNOR approach.
While KNNOR is primarily used for classification data, generating labels
for the artificial minority data point is a straightforward task in that
context. However, when dealing with regression, we maintain a record
of each point involved in producing the new point. After creating the
new point, we consider the distance between the artificial point and
each of these points to determine the target value. The distance, de-
noted as 𝑑

(

𝑦𝑗 , 𝑦𝑖
)

= ||𝑥𝑗−𝑥𝑖|| and represented as 𝑑𝑗 , can be generalized
as follows. If 𝑑𝑖 is the distance of the artificial point 𝑥𝑛𝑒𝑤 to the 𝑖𝑡ℎ
parent point 𝑥𝑖, and 𝑦𝑖 is the target value for this point, then the target
value 𝑦𝑛𝑒𝑤 corresponding to the freshly created data point is expressed
using Eq. (5) as follows:

𝑦new
𝑖 = 𝛼

√

√

√

√

√

√

√

√

√

∑𝑘
𝑗=1

(

𝑦𝑗
𝑑
(

𝑥𝑗 ,𝑥new
𝑖

)

)𝛼

∑𝑘
𝑗=1

(

1
𝑑
(

𝑥𝑗 ,𝑥new
𝑖

)

)𝛼 (5)

where 𝑦𝑖 = 𝑅𝑒𝑔(𝑥𝑖), Reg() is the function that we try to estimate better.
The value 𝑑(𝑦 , 𝑦 ) = ||𝑥 − 𝑥 || = 𝑑 and 𝑥 is the nearest neighbor
7

𝑗 𝑖 𝑗 𝑖 𝑗 𝑗
Fig. 12. The extension of KNNOR to estimate the target value using the distances
of the new point 𝑥𝑛𝑒𝑤 to the points associated with its creation — starting with 𝑥0
followed by 𝑥1, 𝑥2 and 𝑥3.

Fig. 13. The extension of KNNOR to estimate the target value using the origin point
𝑥1 and two of its nearest neighbors, 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡11 and 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡12 .

to 𝑥𝑖. The vectors 𝑥1 to 𝑥𝑘 are the 𝑘 nearest neighbors of 𝑥𝑛𝑒𝑤𝑖 The
value of 𝛼 is 2 in case of euclidean distance or infinity in case of higher
dimension. In our experiments we have used the value of 𝛼 as 2. The
number of points or neighbors that participated in the creation of the
point is denoted by 𝑘. When the value of 𝛼 is 1 and 𝑘 is 2, it gives the
original case of SMOTE-Regression. When the value of 𝑘 changes from
2 onward, it is an application of the KNNOR-Regression method. The
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process is illustrated in Fig. 12 which uses a weighted sum of the target
values corresponding to 𝑥0, 𝑥1, 𝑥2 and 𝑥3 to generate the target value
for the new data point.

An alternative description of the process is shown in Fig. 13. The
origin point is 𝑥1 and two of its nearest neighbors are 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡11 and
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡12 . 𝑥𝑛𝑒𝑤1 is the artificial point created by using 𝑥1 and its two nearest
neighbors following the process of KNNOR (Islam et al., 2022b). While
the new point 𝑥𝑛𝑒𝑤 is being generated, we keep track of the points
and neighbors involved in the operation. In this case, they are 𝑥1,
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡11 and 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡12 . Their corresponding target values are represented
in the vertical line on the right side of Fig. 13. The target value
corresponding to 𝑥1 is 𝑦1, 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡11 is 𝑦𝑛𝑒𝑎𝑟𝑒𝑠𝑡11 and 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡12 is 𝑦𝑛𝑒𝑎𝑟𝑒𝑠𝑡12 . We
also measure the distance between the newly created point 𝑥𝑛𝑒𝑤1 and
the three points 𝑥1, 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡11 and 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡12 . The distances are 𝑑1, 𝑑11 and
𝑑12 respectively. Finally, we utilize Eq. (5) in the following manner, as
specified in Eq. (6) as follows:

𝑦𝑛𝑒𝑤1 =

𝑦1
𝑑1

+
𝑦𝑛𝑒𝑎𝑟𝑒𝑠𝑡11
𝑑11

+
𝑦𝑛𝑒𝑎𝑟𝑒𝑠𝑡12
𝑑12

1
𝑑1

+ 1
𝑑11

+ 1
𝑑12

(6)

where 𝛼 is set to 1. The process of generating artificial data points and
their corresponding target values using a combination of KNNOR and
SMOTE-Regression is outlined in Algorithm 1.

Algorithm 1 KNNOR Regression (KNNOR-Reg)

Input Training data set 𝑆𝑡𝑟𝑎𝑖𝑛;
number of neighbors 𝑘;
count of datapoints to be augmented 𝑎𝑢𝑔_𝑛𝑢𝑚;
Output Artificial point with target values
𝑛𝑒𝑤_𝑝𝑜𝑖𝑛𝑡𝑠 = generate artificial points using KNNOR
𝑛𝑒𝑤_𝑡𝑎𝑟𝑔𝑒𝑡𝑠 = empty array of size(𝑛𝑒𝑤_𝑝𝑜𝑖𝑛𝑡𝑠)
For point 𝑝 in each 𝑛𝑒𝑤_𝑝𝑜𝑖𝑛𝑡𝑠 do

𝑘_𝑛𝑏𝑟𝑠 = the 𝑘 points that were used to create 𝑝
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑢𝑚_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0
𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 0
For each neighbor 𝑛 in 𝑘_𝑛𝑏𝑟𝑠 do
𝑑𝑖𝑠𝑡 = distance between 𝑛 and 𝑝
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑢𝑚_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 += (target value of 𝑛)/𝑑𝑖𝑠𝑡
𝑤𝑒𝑖𝑔ℎ𝑡𝑠 += 1/𝑑𝑖𝑠𝑡

End For
𝑓𝑖𝑛𝑎𝑙_𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑎𝑙𝑢𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑢𝑚_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑤𝑒𝑖𝑔ℎ𝑡𝑠
add 𝑓𝑖𝑛𝑎𝑙_𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑎𝑙𝑢𝑒 to 𝑛𝑒𝑤_𝑡𝑎𝑟𝑔𝑒𝑡𝑠

Return 𝑛𝑒𝑤_𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛𝑒𝑤_𝑡𝑎𝑟𝑔𝑒𝑡𝑠

The process of generating artificial data points along with their cor-
esponding target values is elucidated through a flowchart, as depicted
n Figs. 14 and 15. Fig. 14 outlines the methodology for creating new
ata points, while Fig. 15 illustrates the procedure for computing target
alues associated with the newly generated data points.

.3. KNNOR-Deep Regression (KNNOR-DeepReg) — [High population data]

Although KNNOR-Reg is a powerful approach for data imputation
nd the inclusion of multiple neighbors introduces non-linearity, it is
ossible to enhance the method further by utilizing neural networks.
his concept draws inspiration from our previous research on Class
ware Autoencoders (Islam et al., 2022a), as described in Section 2.2.4.

n this study, we expand upon Class Aware Autoencoders and intro-
uce Target Aware Autoencoders and Target Aware AutoInflaters, as
utlined below.

.3.1. Target Aware AutoEncoders - [High population, high-dimension
ata]

To delve deeper into the concept of Target Aware Autoencoders,
e refer to Fig. 16, which represents our objective. Our aim is to train
neural network that can predict target values while simultaneously
8

Fig. 14. Flowchart showing the process of generation of novel artificial data points
using the k nearest neighbors.

Fig. 15. After generation of the new data points (Fig. 14), this flowchart shows the
process of computing the corresponding target values of each novel data point by using
the target values of the k nearest neighbors.
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Fig. 16. Target Aware Auto Encoder (Fully Connected). The neuron highlighted in red represents the additional value generated, matching the target value. The network is capable
not only to extract features but also estimate the target value. The latter is generated by including an additional component in the loss function.
Fig. 17. Target Aware Inflater-Deflater (Fully Connected) for low dimension data. The neuron highlighted in red represents the additional value generated, matching the target
value. The bottleneck expands the feature set while the Network gives an additional output, the target value corresponding to the features. This is done by including the target
value in the output as well as the loss function.
learning the features of the rare dataset. In this context, the Autoen-
coder is defined as the function 𝐹 , from R𝑑 to R𝑑+1 using Eq. (7) as
follows:

𝐹 (𝑋) = (𝑋̂, 𝑦̂) (7)

where 𝑋 is the input feature, 𝑋̂ and 𝑦̂ are the approximations of input
features and target values by the model. The model can thus mimic
the input features on the output side and also generates a target value
that it learns while learning the features. Thus, although on the input
side, we only provide the features, on the output, we enforce the target-
aware model to generate an estimated target value. This is achieved
by defining a new loss function that enables the model to learn from
the features as well as the targets. It is explained in the following
Section 3.3.3. Initially, the model has a high error in generating the
target value, gradually improving with multiple iterations. It is inter-
esting to note here that the target values, 𝑦 are not represented in the
input of the neural network unlike the class aware auto encoders (Islam
et al., 2022a) as tests have shown that removing the target from the
input achieves better results. The second loss term is fed to the model
externally during every training batch to gauge the features and the
target. The process is shown in Fig. 16 where the neuron highlighted in
red captures the additional value generated, matching the target value.

3.3.2. Target Aware AutoInflaters - [high population, low-dimension data]
Autoencoders are commonly used on high-dimensional data to re-

duce the number of features and extract valuable information. This is
why they are often applied to image datasets. However, in real-life
tabular regression data, the number of features is typically not too
large, and compressing the data may result in loss of information. To
address this issue, we propose an expansion-decoder network specifi-
cally designed for datasets with a lower number of features. Fig. 17
illustrates this design, where the initial part of the network inflates
the feature information into a basin and then deflates it back to both
the features and the target value. This approach allows us to preserve
the information in the data without distortion.
9

Fig. 18. Role of Target Aware Auto Encoder in generating new data samples as well
as estimating target value for the novel data points. Same can be applied to target
aware auto-inflater.

The ultimate objective of both the target-aware autoencoder and
deflater is identical. They aim to learn dataset features in a manner that
the bottleneck representation can be used to generate new data points
while the decoder can be used to obtain target values for any data point.
This process is illustrated in Fig. 18, depicting the sequential steps from
1 to 6. Initially, a target-aware autoencoder/inflater is trained. Step 1
represents passing the data as input to the system. Bottleneck features
are extracted at step 2 and passed to the KNNOR Regression algorithm
in steps 3 and 4 to generate new data points. The decoder is leveraged
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Fig. 19. Progression of error values with increasing distance between actual and
predicted.

at steps 5 and 6 to estimate the target value for the artificial data point
created.

3.3.3. Exponential loss function [Applicable to Target Aware Auto En-
coders/Inflaters]

To assess the accuracy of both the AutoInflaters and Target-Aware
AutoEncoders, common regression loss functions such as Mean Abso-
lute Error (MAE) or Root Mean Square Error (RMSE) can be employed.
The overall loss is reiterated in Eq. (8) as follows:

𝑡𝑜𝑡𝑎𝑙_𝑙𝑜𝑠𝑠 = (𝑋̂, 𝑋) +𝑊 ∗ ̂(𝑦̂, 𝑦) (8)

where 𝑡𝑜𝑡𝑎𝑙_𝑙𝑜𝑠𝑠 is the accumulated loss over the features and the target
values. The ̂ function can be same as the function  applied on the
feature set, however we propose the two functions to be separate. As
the count of features outnumbers the target variable, the network is
coerced to prioritize the target variable by:

• Using a penalty function ̂ on the target values such that the
difference between the predicted and actual target value is mag-
nified;

• Adding 𝑊 to the above loss value to balance for the disparity
between cardinality of feature sets (>> 1) and cardinality of
target values (usually one);

• By introducing a weight value and employing a distinct loss
function ̂, we aim to incorporate a penalizing function that
exhibits accelerated growth as the deviation from the original
value increases. This function is depicted in Eq. (9) as follows.

̂(𝑦̂, 𝑦) = |𝑦̂ − 𝑦| ∗ 𝑒|𝑦̂−𝑦| (9)
The efficacy of the function is described in Fig. 19. The orange

line depicts 1000 randomly generated delta values or the absolute
difference between the predicted and actual, while the blue line plots
the penalty value . This additional loss (̂) calculation along with the
weight factor (𝑊 ) helps in balancing the influence of the input features
over the target variable.

3.4. Multi-level Auto Encoder - [Image data]

In the case of image datasets, the approach was different as training
a target-aware Auto Encoder directly on the images was not yielding
good results. The reason was that the image features’ loss function
overwhelmed the target variables’ loss function. The accuracy of the
entire model was high despite the accuracy of target prediction being
relatively low. In order to cope with this discrepancy, a multi-level
Autencoder scheme is proposed. The first-level auto-encoder is a simple
Convolution Autoencoder that extracts features from the images and
10
converts them into vectors at the bottleneck. At the second level lies a
target aware, fully connected Auto Encoder that uses the bottleneck of
the previous level Autoencoder as input and trains a target-aware Neu-
ral Network. Fig. 20 illustrates the process. The external Convolution
Auto Encoder is responsible for extracting the features from the image
dataset at the bottleneck (marked as BottleNeck1 in Fig. 20). These
features and the target values (provided externally) are used to train
the internal target-aware Auto-Encoder. The bottleneck of the internal
Auto-Encoder (marked as BottleNeck2) is used to reduce the feature
size of the dataset further, and KNNOR is applied to these extracted
features to generate new data points. This approach proves to be more
efficient than training a single target-aware autoencoder on the images
directly, as seen in Table 7.

3.4.1. Approach summary
The approach for estimating the target value of artificial data points

needs to adapt as the shape of the data changes. In this regard, two
key characteristics are taken into account: the number of features in
the data and the population of the minority dataset. These factors play
a significant role in determining the appropriate method for estimating
the target value in the context of generating artificial data points.

• Large Dataset with a high number of features. In this case, we employ
a Target Aware autoencoder (depicted in Fig. 16) to extract the
features and reduce their dimensionality. Subsequently, the KN-
NOR algorithm is applied to this feature set in order to upsample
the minority dataset. Finally, we utilize the pre-trained Target
Aware autoencoder to predict the target values for the generated
artificial data points. The process is illustrated in Fig. 21. This
approach is commonly utilized for numerous image datasets.

• Large Dataset with low number of features. In this case, we employ
a Target aware Inflate-Deflate architecture to expand the dataset
and enhance its representation. The features are extracted from
the basin and utilized to generate artificial data points using the
KNNOR algorithm. Subsequently, these data points are fed into
the Deflater part of the network to generate the corresponding
target data points. Fig. 22 illustrates this process. This approach
is particularly useful for large tabular datasets.

• Small Dataset with a high or low number of features. In case where
the dataset is small, we employ the KNNOR algorithm to cre-
ate artificial data points regardless of the number of features.
Subsequently, we utilize the KNNOR-Reg method to predict the
potential target values for these artificial data points. The steps
involved in this process are illustrated in Fig. 23.

The result of augmentation process for different datasets has been
shown in Figs. 24 and 25. Figures a and b of each figure show a scatter
plot of the data after doing a Principal Component Analysis (PCA) for
representation in 2-dimensions.

Fig. 24(a and b) shows the augmentation efforts on the laser dataset
using the KNNOR-Regression method (Section 3.2). Fig. 24(c and d)
illustrate a variant of the KNNOR-DeepRegression method where KN-
NOR is used to oversample the data and then an AutoInflater is used to
estimate the target values for the synthetic data. In Figs. 24a and 24c,
the augmented points are the same, however since the method to obtain
the target value is different in each case, Figs. 24b and 24d capture
a different distribution of the augmented target values. Fig. 25 shows
the same comparison for the ele-2 dataset using the same 2 methods.
Here also, Fig. 25b shows the target values obtained using the target
values of the k-nearest neighbors. In case of Fig. 25d, a Target Aware
AutoInflater was trained on the training data. Consequently the new
points generated using KNNOR were passed into the AutoInflater to
obtain their target values. The difference is apparent in the histogram of
distributions as shown in Figs. 25b and 25d, where, although the shapes
of the histograms are similar, the frequency of the different ranges of
values is different.
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Fig. 20. Multi-level Auto Encoders for Images. First, CNN Auto Encoders to reduce the dimension of images. Second, Fully Connected Target Aware Auto Encoders to learn the
target values of minority data set.
Fig. 21. Target generation steps for data with high population and high dimension.

3.5. Summary

Fig. 26 provides an overview of the various approaches mentioned
in the previous subsections, allowing users to easily assess and select
the most suitable method based on the data structure being consid-
ered. The figure showcases the approach used for image data, while
for tabular data, specific recommendations are provided for scenarios
involving high or low population and high or low dimensions. This
comprehensive visualization aids in navigating the available techniques
and making informed choices based on the characteristics of the data
at hand.

4. Results and discussion

In this section, we detail our experimental design, where we eval-
uate the efficacy of our methods on established imbalanced regression
datasets and present the results and discussions. We have delineated
four distinct sets of experiments. The first experiment involves a perfor-
mance comparison between our oversampling technique and SMOTER
on tabular data, while the second experiment replicates this perfor-
mance evaluation using image data. The third experiment assesses
whether our augmentation method genuinely enhances the regression
11
Fig. 22. Target generation steps for data with high population and low dimension.

capabilities of three state-of-the-art regressors. Lastly, the fourth experi-
ment gauges the efficiency of our oversampling algorithm in improving
the predictive prowess of 18 regressors.

4.1. Experiment design

This section focuses on evaluating the effectiveness of oversampling
techniques and target value predictors in the subsequent regression
step. The experimental procedure is designed to compare the proposed
methods in this paper against existing techniques, with a primary
emphasis on SMOTER (Torgo, Ribeiro, Pfahringer, & Branco, 2013)
for both tabular and high-dimensional (image) datasets. 1 and 2 pro-
vide details on the datasets used, sourced from the data repository
at https://paobranco.github.io/DataSets-IR/ (Branco et al., 2019), and
the Keel repository (Derrac, Garcia, Sanchez, & Herrera, 2015). 33%
of the data in each file was preserved for test while the rest was
used for training and oversampling. For these tabular datasets, we
applied the approaches illustrated in Figs. 22 and 23. To assess the
performance on high-dimensional datasets, we utilized the Image-Age
dataset obtained from the AgeDB (Moschoglou et al., 2017) and IMDB-
WIKI (Rothe, Timofte, & Van Gool, 2018) repositories, employing the
approach illustrated in Fig. 21. In the case of AgeDB, images with an
age label exceeding 80 were considered rare, while for IMDB-WIKI, the

https://paobranco.github.io/DataSets-IR/
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Fig. 23. Target generation steps for data with low population.
Fig. 24. Augmentation of data and target values on the laser dataset, using KNNOR-
Regression and KNNOR-DeepRegression. Figures a and c show the scatter plot of data
considered to be common and rare and also show the datapoints after augmentation,
Figures b and d show the frequency of the labels of the common, rare and augmented
data points.

age threshold was set at 75. By conducting these experiments, we aim
to provide a comprehensive comparison and evaluation of our proposed
methods alongside existing techniques.

4.1.1. Evaluation process and metrics
The dataset was initially divided into training and test sets, with

the test dataset being kept separate throughout the augmentation and
training process. The three methods employed are outlined as follows:

1. The training data was split into two classes, rare and common,
depending on the relevance threshold. Considering it to be a
classification dataset (rare and common), it was passed through
the KNNOR approach (Islam et al., 2022b) approach to create
artificial data points of the rare category. The target labels of
points used in the creation of each artificial data point were then
aggregated to calculate the label of the new point created. The
augmented data points with labels were added back to the train-
ing set, and regressors were trained to check the performance on
the test dataset;
12
Fig. 25. Augmentation of data and target values on the ele-2 dataset, using
KNNOR-Regression and KNNOR-DeepRegression. Figures a and c display scatter plots
representing data points categorized as common and rare, including the augmented
data points. Meanwhile, Figures b and d illustrate the label distribution for common,
rare, and augmented data points.

2. KNNOR-DeepReg process: Similar to the KNNOR-Reg process,
the training data was split into rare and common classes. The
rare data was used to train target-aware autoencoders (depicted
in Figs. 16 and 17). The KNNOR method was then applied
separately to create artificial data points for the rare class.
These generated artificial points were passed through the trained
autoencoders to obtain the target labels for the new data points.
The augmented data points, along with their labels, were incor-
porated back into the training set, and regressors were trained
to assess performance on the test dataset;

3. For image datasets, the process began by dividing the training
data into rare and common classes. A generic autoencoder was
trained on the images to learn and extract their features, thereby
reducing the dimensionality of the data. The entire training
image set was then fed through the autoencoder to extract
features for both rare and common data. A target-aware autoen-
coder was trained on the extracted features of the rare class to
learn the target values specific to those features. KNNOR was
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Fig. 26. Recommendation of techniques for varying structure of data. Regarding Tabular data, we offer different methods depending on the population and number of features.
We propose KNNOR-Regression (Section 3.2) for low population data. For data with a high population, we advocate KNNOR Deep Regression which has two flavors. For high-
population data with a high number of features, we use Target Aware AutoEncoders (Section 3.3.1), and for high-population data with a low number of features, we use Auto
Inflaters (Section 3.3.2). Finally, for Image datasets, we use a combination of Convolution and Fully Connected AutoEncoders called Multi-Level AutoEncoders (Section 3.4).
Table 1
Numerical datasets used in comparison.

Data set Instances Features Relevance threshold Rare Rare (percentage) Type of extreme

ANACALT 4052 7 0.8 835 0.21 lower
bank8FM 4499 8 0.8 285 0.06 upper
baseball 337 16 0.5 50 0.15 upper
boston 506 13 0.8 113 0.22 upper
compactiv 8192 21 0.8 713 0.09 lower
concrete 1030 8 0.8 52 0.05 upper
cpuSm 8192 12 0.8 713 0.09 lower
ele-1 495 2 0.8 43 0.09 upper
ele-2 1056 4 0.8 110 0.1 upper
forestFires 517 12 0.8 78 0.15 upper
friedman 1200 5 0.5 48 0.04 upper
laser 993 4 0.8 75 0.08 upper
machineCPU 209 6 0.8 31 0.15 upper
mortgage 1049 15 0.8 106 0.1 upper
quake 2178 3 0.8 118 0.05 upper
stock 950 9 0.5 63 0.07 upper
treasury 1049 15 0.8 109 0.1 upper
wankara 321 9 0.5 31 0.1 lower
Table 2
High dimension (image) datasets used in comparison.

Data set Instances Features Rare Rare (percentage) Type of extreme

AgeDB 16 488 64 × 64 494 0.03 upper
IMDB-WIKI 213 553 64 × 64 2721 0.012 upper
subsequently applied to the training set of extracted features,
creating additional artificial data points belonging to the rare
13
class. The augmented features were then passed through the
target-aware autoencoder to generate the corresponding target
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Table 3
Hyperparameters of regressors.

Regressor Hyperparameters

Support Vector regression kernel = ‘rbf’, degree = 3, gamma = ‘scale’, coef0 = 0.0, tol = 0.001, C = 1.0

Random Forest regression n_estimators = 100, criterion = ‘squared_error’, max_depth = None, min_samples_split = 2,
min_samples_leaf = 1

Gradient Boosting regression loss = ‘squared_error’, learning_rate = 0.1, n_estimators = 100, subsample = 1.0, criterion =
‘friedman_mse’, min_samples_split = 2, min_samples_leaf = 1

Fully Connected Network hidden_layer_sizes = (100,), activation = ‘relu’, *, solver = ‘adam’, alpha = 0.0001, batch_size
= ‘auto’, learning_rate = ‘constant’, learning_rate_init = 0.001
Table 4
Demonstration of relative error. The two rows represent two different distributions. For
the first distribution, maximum of test target values is 0.1 while that for the second
is 100. Error percentage is Absolute Difference divided by the maximum of true target
values for each distribution.

True value Predicted value Absolute difference Error percentage

0.1 1.1 1 0.909
100 101 1 0.0099

values. The augmented data points, along with their generated
labels, were integrated back into the training set of extracted
features. Regressors were trained and applied to the test data to
evaluate accuracy.

By employing these three methods, the performance and accuracy of
each approach were assessed using the test dataset. It can be noted
that the third method is an extension of the second method as it
contains an additional step of feature extraction from image datasets.
Also the processes of transformation on the training data have been
applied to the test data to enable accuracy estimation. The machine
learning algorithms used at the end include Linear Regression (Barupal
& Fiehn, 2019), Support Vector regression (SVR) (Vapnik & Vapnik,
1998), Random Forest regression (RF) (Segal, 2004), Gradient Boost-
ing regression (GBR) (Natekin & Knoll, 2013) and a Fully Connected
Network (FCN) (Kohler & Langer, 2021). The fully connected network
consists of the input layer, followed by 5 hidden layers and the output
layer. The activation function is Rectified Linear Units (ReLU) (Agarap,
2018) in each case. Table 3 defines the different hyper parameters for
each regressor.

The RMSE has been used in calculating the error percentage overall.
Although RMSE is a ubiquitous error metric for regression, it does not
lend itself easily to comparison for results on normalized data. The
data needs to be denormalized before calculating RMSE. We propose
a different relative error calculation method on the normalized output
itself in order to obtain more intuitive and easily comparable results.
The relative max error (RMaxE) is defined in Eq. (10) as follows:

𝑅𝑀𝑎𝑥𝐸 = 1
𝑛

√

√

√

√

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝑦𝑖
𝑦𝑚𝑎𝑥

)2
(10)

where 𝑦𝑖 is the predicted value and 𝑦𝑖 is the actual target value. The
value 𝑦𝑚𝑎𝑥 is the maximum target value in the test set, and 𝑛 is the
number of samples in the same. The utility of the error metric is
illustrated in Table 4, which shows the difference in error percentage
even when the absolute differences are the same. A true value of 0.1,
represented as 1.1, is inferior to predicting 101 against the true value of
100. In order to allow the error to be expounded, we divide the absolute
difference by the maximum true value in the test set. This helps magnify
the error at lower values compared to the same error at higher values.

4.1.2. Augmentation framework
For each train–test split of every dataset, we conduct evaluations

with varying levels of augmentation employing different regression
techniques. The initial evaluation is conducted without any augmen-
tation, and subsequent assessments involve the application of both
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state-of-the-art and our proposed augmentation methods.
• State-of-art: In this context, we utilize the SMOTE for Regres-
sion (SMOTER) technique, which is introduced by Torgo (Torgo
et al., 2013), as our chosen augmentation method. The parameters
configured for SMOTER are as follows:

– Maximum distance: The maximum distance from existing
minority points, with values ranging from 0.001 to 0.01 to
0.1. This determines the placement of new points relative to
the existing minority points;

– Addition proportion: A list of values ranging from 0.1 to
0.5 to 0.8, indicating the proportion of the population to be
added to the minority dataset. For example, an addition pro-
portion of 0.1 means that, after adding the minority points,
the minority population would be 60% of the majority popu-
lation. It is worth noting that, unlike (Camacho et al., 2022),
we did not aim to match the minority population with the
majority population exactly, to save computational effort
and showcase comparative improvement over the original
data (Haixiang et al., 2017).

• Proposed Approach: In this case, we employ the KNNOR ap-
proach (Islam et al., 2022b) as the augmentation technique. The
parameters used in KNNOR are as follows:

– Number of neighbors: The number of neighboring points
used to generate a new data point, with values ranging from
2 to 5 to 10;

– Usable minority proportion: The proportion of the minor-
ity population used in generating the artificial data point,
with values ranging from 0.2 to 0.6 to 0.9. For example,
if the minority population is 100 and the usable minority
proportion is 0.6, only 60 minority data points are utilized
in producing the artificial data points. The selection of these
60 data points is based on a criticality estimate explained
in Islam and Belhaouari (2021).

With the range of parameters mentioned, a total of 243 experiments
are conducted on each file, resulting in a cumulative total of 53,217
experiments for the 18 numerical datasets.

4.2. Results

Tables 5, 6, and 7 provide the results of the conducted comparisons.
Table 5 presents the mean of the best performance achieved by various
regressors on different datasets, with the max-relative-score serving as
the error metric. In Table 6, the mean Root Mean Squared Error (RMSE)
score on different datasets is presented. Table 7 focuses specifically
on the RMSE score for image datasets. Each column in these tables
represents a different technique employed in the experiment, while
the rows correspond to the various regression algorithms utilized. It
is important to mention that in Table 6, the AutoInflaters have been
trained with either the exponential or RMSE loss, corresponding to the
columns in Table 5. In Tables 5 and 6, the columns are structured as
follows.
• Column 1: Different Regressors used;
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Table 5
Relative-max-error scores for different datasets.

Regression No SMOTE Type Type Type Type Type Type Type
algorithm oversampling regression I II III IV V VI VII

RFR 1.1749 1.1397 1.1212 1.1263 1.135 1.2892 1.2589 1.2844 1.3244
GBR 1.1479 1.1184 1.0924 1.1054 1.1055 1.3297 1.2951 1.3291 1.3526
SVR 1.7765 1.7095 1.662 1.6663 1.6647 1.629 1.6316 1.6069 1.6902
LR 2.0867 2.1257 2.1056 2.1047 2.1114 1.6612 0.4964 1.6502 1.5737
FCN 0.3951 0.4886 0.4866 0.3883 0.3915 0.5244 0.5665 0.5187 0.5676
Table 6
RMSE scores for different datasets.

Regression No SMOTE Type Type Type Type Type Type Type
algorithm oversampling regression I II III IV V VI VII

RFR 0.0085 0.0075 0.0071 0.0074 0.0073 0.0097 0.0095 0.0097 0.0091
GBR 0.0078 0.0074 0.0065 0.0065 0.0064 0.0098 0.0087 0.0097 0.0092
SVR 0.013 0.0126 0.0119 0.0118 0.0117 0.0117 0.0117 0.0115 0.0116
LR 0.0122 0.0121 0.0118 0.0119 0.0118 0.011 0.0092 0.0107 0.0095
FCN 0.0066 0.006 0.0058 0.0064 0.0064 0.0121 0.0126 0.0121 0.0125
• Column 2: Regression error when no augmentation is applied;
• Column 3: Regression error when state of the art SMOTE-Regress-

ion is applied;
• Column 4 (Type I/KNNOR-Regression): Regression error after

applying KNNOR to create synthetic datapoints and then applying
KNNOR-Regression (Ref 3.2) to determine the target values of the
newly created points;

• Column 5 (Type II): Initially, KNNOR is used to generate artificial
data points. Subsequently, the Target-Aware AutoInflaters (Ref
3.3.2) trained on the training data are employed to estimate
the target values for these newly created data points. The loss
function used in these AutoInflaters is RMSE;

• Column 6 (Type III): This column represents the same process
as the previous one, with the difference being that the loss func-
tion used in these AutoInflaters is the exponential loss function
specified in 3.3.3;

• Column 7 (Type IV): In this scenario, KNNOR is applied to the
expanded features of the training data obtained using the first part
of the AutoInflaters. The target values are determined using the
latter (Deflater) part of the same AutoInflaters. The loss function
used in these AutoInflaters is RMSE;

• Column 8 (Type V): This column follows a similar process to the
previous one, but the loss function used in the AutoInflaters is the
exponential loss function specified in 3.3.3;

• Column 9 (Type VI): In this case, the AutoInflaters are employed
to extract the features. Subsequently, KNNOR-Regression is ap-
plied to the inflated features to create the artificial dataset as
well as the target data points. The loss function used in the
AutoInflaters is RMSE;

• Column 10 (Type VII): This column is similar to the previous
one, with the difference being that the loss function used in the
AutoInflaters is the exponential loss function specified in 3.3.3.

The distribution of ranks achieved by non-augmented methods and
ugmentation methods, including SMOTER, KNNOR-Regression, and
NNOR-DeepReg, is visualized in Figs. 27 and 28. Fig. 27 displays

he ranks obtained when the regression metric was relative max error,
hile Fig. 28 presents the ranks of the various regressors when RMSE
as the evaluation metric. The variants of KNNOR-Regression have

anked better a higher number of times than the SMOTE-Regressor.
In both Figs. 27 and 28, the lines represent different algorithms, and

hey are organized as follows:

• No Augmentation. Represents the frequency of ranks for regres-
sors trained on non-augmented data;

• SMOTE-Regression. Represents the frequency of ranks for regres-
15

sors trained on data augmented by the SMOTER method;
Table 7
RMSE score for the image datasets using a fully connected regressor.

Dataset Error No SMOTER KNNOR
metric augmentation DeepReg

IMDB-WIKI RMSE 0.709 0.153 0.137
Relative-Max 3.469 1.657 1.567

AgeDB RMSE 2.33 0.296 0.294
Relative-Max 3.328 1.183 1.178

• KNNOR-Regression. Represents the frequency of ranks for re-
gressors trained on data augmented by KNNOR and target values
calculated by the KNNOR-Reg method 3.2;

• KNNOR-DR-I. Represents the frequency of ranks for regressors
trained on data augmented by KNNOR and target values calcu-
lated by using the target aware AutoInflaters 3.3;

• KNNOR-DR-II. In this case KNNOR was applied on features ex-
tracted by the target aware AutoInflaters. The same AutoInflaters
were used to calculate the target values;

• KNNOR-DR-III. In this case KNNOR was applied on features
extracted by the target aware AutoInflaters. KNNOR-Reg was used
on the artificial data point to calculate the target values.

KNNOR-Regression achieves the best rank among all, followed by
different variations of KNNOR-DeepRegression (KNNOR-DR-X).

Table 7 shows the RMSE score for the two Image datasets used in the
experiment. As the number of datapoints and features are considerably
high, we have only tested them on fully connected deep regressors.
Data imputation increases the accuracy of the models manifolds, with
KNNOR-DeepReg, the accuracy is enhanced further.

The KNNOR-Regression method demonstrates superior performance
across the numerical datasets, followed by the KNNOR-DeepReg meth-
ods. We believe that as the dataset size increases, the KNNOR-DeepReg
method, which utilizes Target Aware AutoInflaters, has the potential to
outperform the KNNOR-Reg process.

The overall performance, as indicated by the RMSE metric, is con-
sistent with the results obtained using the Relative-max-error metric,
confirming its validity. Furthermore, the range of scores in Table 4
(using the relative-max-error metric) is more pronounced and easier
to compare than in Table 6, where the error values show differences in
the third or fourth decimal place.

4.3. Experimenting with strong and weak regressors

In a recent scientific paper titled ‘‘To SMOTE, or not to SMOTE?’’
(Elor & Averbuch-Elor, 2022), the benefits of balancing techniques are
explored, particularly in relation to advanced classifiers. The study
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Fig. 27. Ranks of different methods on all datasets when the error metric was max-relative-error. Lines represent the different methods explained in Section 4.2. KNNOR-Regression
enoted by the green line is the best performing method having ranked the maximum number of times.
nvolves conducting extensive experiments using three state-of-the-art
lassifiers, comparing them to weaker learners used in previous studies.
he results reveal that balancing techniques significantly improved the
rediction accuracy of weak classifiers, including multi-layer percep-
ron, support vector machines, decision tree, and Adaptive Boosting
AdaBoost). However, no noticeable impact is observed on the per-
ormance of more robust classifiers like eXtreme Gradient Boosting
XGBoost) and categorical boosting (Catboost).

To assess the efficacy of the methodology introduced in our pa-
er, we extend our analysis to include the regression variants of
he advanced predictors mentioned in the aforementioned publica-
ion. We compare their performance on both the original and aug-
ented datasets, observing notable performance improvements follow-

ng augmentation. In our assessment, we utilize a comprehensive set of
egression metrics for evaluation including the following:

• MAE measures the average absolute difference between predicted
and actual values;

• Mean Squared Error (MSE). MSE calculates the average squared
difference between predicted and actual values;

• R-squared (R2). R2 measures the proportion of the variance in
the dependent variable that is predictable from the independent
variables. It ranges from 0 to 1, where 1 indicates a perfect fit;

• Explained Variance Score. This metric quantifies the proportion
of the variance in the target variable that is explained by the
model. A score of 1 indicates a perfect fit;

• Median Absolute Error (MedAE). Quantifies the median mag-
nitude of errors between predicted and actual values, offering
robustness to outliers.

In Table 8, the ‘‘Wins’’ column shows how many times the state-of-
he-art (SOTA) regressor on augmented data outperformed the SOTA
16
Table 8
Comparing strong regressors on Augmented vs. Original data. Column ‘‘Wins’’ indicates
how many times the performance of regressor on augmented data was better than
regressor on original imbalanced data.

Regressor Error metric Wins Losses

Mean Absolute Error 9 7
Mean Squared Error 11 5

CatBoost R-squared 11 5
Explained Variance Score 11 5
Median Absolute Error 10 6

Total 52 28

Mean Absolute Error 12 4
Mean Squared Error 10 6

XGBoost R-squared 10 6
Explained Variance Score 11 5
Median Absolute Error 13 3

Total 56 24

Mean Absolute Error 13 3
Mean Squared Error 14 2

LightGBM R-squared 14 2
Explained Variance Score 14 2
Median Absolute Error 12 4

Total 67 13

regressor on the original data. This count is significantly higher im-
plying that the augmentation of imbalanced data using our technique
enhances the performance of strong regressors. For those interested in
exploring the underlying code and details of this simulation, we have
made the code repository available on GitHub at the following Github
link.

https://github.com/ashhadulislam/CompareSOTAReg/tree/main
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Fig. 28. Ranks of different methods on all datasets when the error metric was RMSE. Lines represent the different methods explained in Section 4.2. KNNOR-DR-I is the best
erforming method followed by the KNNOR-Regression method as they rank 1st maximum number of times.
Table 9
Models used for extensive testing. All of them have been used by leveraging the Pycaret library in python which
gives standard implementation of all the models (Ali, 2020).

Models Models Models

AdaBoost Regressor Extreme Gradient Boosting Least Angle Regression
Bayesian Ridge Gradient Boosting Regressor Light Gradient Boosting Machine
Decision Tree Regressor Huber Regressor Linear Regression
Dummy Regressor K Neighbors Regressor Orthogonal Matching Pursuit
Elastic Net Lasso Least Angle Regression Passive Aggressive Regressor
Extra Trees Regressor Lasso Regression Random Forest Regressor
4.4. Testing with additional models

In order to cement our claims, we have added a host of models to
train on augmented as well as non-augmented data and then compare
their performance on the test data. The datasets have been already
mentioned in Table 1 and the models used are mentioned in Table 9.
Default hyper-parameters were used for each model as mentioned in Ali
(2020).

We conducted a comprehensive evaluation by applying each model
to both augmented and non-augmented datasets. To assess their per-
formance rigorously, we employed a set of six essential metrics: MAE,
MSE, RMSE, R-squared (R2), Root Mean Squared Logarithmic Error
(RMSLE), and Mean Absolute Percentage Error (MAPE). These met-
rics have been defined in Section 4.3 and provide a well-rounded
perspective on how well the models make predictions.

Our analysis involved calculating how many times the models
trained on augmented data outperformed those trained on non-augme-
nted data across all six metrics. This cumulative count provides a con-
solidated measure of the augmentation’s impact on model performance.
By considering multiple metrics and aggregating the results, we gain a
17

holistic understanding of the benefits of using augmented data, offering
a robust assessment of its efficacy in enhancing predictive models. A
total of 1368 experiments were made, for 18 models on 18 datasets.
Augmentation was performed for 3, 4 and 5 neighbors and the best
result was selected.

The results in Table 10 provide a comparative overview of 18 re-
gression models evaluated on both augmented and original imbalanced
data. Following is a detailed summary of the findings:

1. Passive Aggressive Regressor, Linear Regression, and Light Gra-
dient Boosting Machine are the top-performing models, with
wins in approximately 83.33% of cases.

2. Ridge Regression and Bayesian Ridge follow closely, with wins
in about 82.29% of cases.

3. Decision Tree Regressor, Random Forest Regressor, and Ad-
aBoost Regressor also demonstrate strong performance, with
wins in 79.17% to 75.15% of cases.

4. Several models, including Extreme Gradient Boosting, Least An-
gle Regression, and Lasso Regression, exhibit wins in approxi-
mately 75% of cases.

5. Models like Extra Trees Regressor, Huber Regressor, and Elastic
Net have wins in the range of 68.75% to 66.67% of cases.
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Table 10
Comparing 18 regression models on Augmented vs. Original Data. Column ‘‘Wins’’
indicates how many times the performance of regressor on augmented data was better
than regressor on original imbalanced data.

Regressor Wins Losses Percentage Wins (%)

Passive Aggressive Regressor 480 96 83.33
Linear Regression 480 96 83.33
Light Gradient Boosting Machine 480 96 83.33
Ridge Regression 474 102 82.29
Bayesian Ridge 474 102 82.29
Decision Tree Regressor 456 120 79.17
Random Forest Regressor 444 132 77.08
AdaBoost Regressor 517 171 75.15
Extreme Gradient Boosting 432 144 75
Least Angle Regression 432 144 75
Lasso Regression 414 162 71.88
Extra Trees Regressor 402 174 69.79
Huber Regressor 396 180 68.75
Elastic Net 384 192 66.67
Gradient Boosting Regressor 366 210 63.54
Orthogonal Matching Pursuit 324 252 56.25
K Neighbors Regressor 318 258 55.21
Lasso Least Angle Regression 228 348 39.58

Total 7501 2979 71.57

6. Gradient Boosting Regressor, Orthogonal Matching Pursuit, and
K Neighbors Regressor have relatively lower win percentages,
ranging from 63.54% to 55.21%.

7. Lasso Least Angle Regression has the lowest win percentage at
39.58%.

The overall trend indicates that several regression models benefit
rom using augmented data, resulting in a performance improvement.
assive Aggressive Regressor, Linear Regression, and Light Gradient
oosting Machine consistently outperform others, showcasing their
obustness in handling imbalanced data when augmented. However,
t is important to note that the degree of improvement varies among
he models, and some models may not benefit significantly from aug-
entation. The aggregate win percentage across all models is 71.57%,
nderscoring the overall efficacy of data augmentation in enhancing re-
ression model performance. The code base for comparison is available
t the following Github link.

. Conclusion and future work

This paper introduces innovative techniques for augmenting regres-
ion datasets, specifically addressing the challenge of imbalanced data.
e extend the widely used K Nearest Neighbor OverSampling (KNNOR)

pproach, commonly employed in imbalanced classification datasets,
o work effectively in regression datasets. Unlike classification data, re-
ression datasets require estimating continuous target values for newly
reated data points. To tackle this, we enhance the KNNOR algorithm
y keeping track of the neighboring data points used in generating new
ata points and accumulating their corresponding target values. The
arget value of the newly created point is then estimated based on the
istances to these neighboring points.

Furthermore, we propose the use of Target Aware Autoencoders
nd Target Aware AutoInflaters as an alternative approach for estimat-
ng target values in regression datasets. This involves incorporating a
eighted component of target estimation into the loss equation while

raining the autoencoders. By learning the features of the rare dataset
nd fine-tuning the weights, these models can predict continuous values
f the target variable.

In addition to numerical datasets, we also introduce a two-tier au-
oencoder scheme tailored for imbalanced image datasets. This scheme
nables the extraction of features and learning of target values at
ubsequent levels of autoencoders, allowing for effective augmentation
f imbalanced image data.
18
Our experimental results clearly demonstrate the superior perfor-
mance of the proposed approaches in comparison to previous state-
of-the-art methods. In an effort to facilitate the adoption of these
techniques, we provide the code as a user-friendly tool, accessible even
to non-specialist users. These methods hold significant potential for
improving critical areas of regression where imbalanced data presents
a significant challenge.

To make our code readily accessible, we host it on GitHub and
created a Python package. This code primarily focuses on the core
features of our concept, particularly in managing imbalanced numeric
datasets by applying distribution-aware oversampling. The code base
can be found at Github and the python package can be installed from
pypi. A jupyternotebook is also available to the reader as an end-to-end
implementation of the algorithm.

5.1. Future research directions

Building on the findings of this study, the following research en-
deavors can be pursued:

1. Expansion to Other Data Types: While this paper focuses on
numerical and image datasets, future work could explore the ap-
plication of these augmentation techniques to other data types,
such as time-series or audio data, where imbalance also poses
significant challenges.

2. Integration with Deep Learning Models: Further research could
investigate the integration of the proposed augmentation meth-
ods directly within deep learning training pipelines, potentially
enhancing model performance by providing more balanced and
informative training data.

3. Automated Feature and Target Value Adjustment: Developing
algorithms that automatically adjust feature representations and
target values based on the specific characteristics of the dataset
could lead to more generalized and effective augmentation
strategies.

4. Cross-Domain Application: Examining the applicability and ef-
fectiveness of the proposed techniques in diverse domains such
as finance, healthcare, and environmental science could reveal
insights into their versatility and adaptability to various types of
regression problems.

5. Enhancing Autoencoder Architectures: Future studies might fo-
cus on optimizing the architecture of Target Aware Autoen-
coders and AutoInflaters, including exploring different neural
network models and training procedures to further improve their
accuracy in estimating target values.

By pursuing these future directions, the research community can
build upon the foundation laid by this paper, driving forward the de-
velopment of robust solutions to the persistent challenge of imbalanced
data in regression analysis.

Code availability

The code base is available at https://github.com/ashhadulislam/
augmentdatalib_reg_source/tree/main And the python package can be
installed from https://pypi.org/project/knnor-reg/ The following
Jupyter notebook contains an end-to-end example implementation of
the algorithm. https://github.com/ashhadulislam/augmentdatalib_reg_
source/blob/main/example/Example.ipynb. This information has been
added to the conclusion section (Section 5) in the paper.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

https://github.com/ashhadulislam/CompareSOTAReg/tree/main
https://github.com/ashhadulislam/augmentdatalib_reg_source/tree/main
https://pypi.org/project/knnor-reg/
https://github.com/ashhadulislam/augmentdatalib_reg_source/blob/main/example/Example.ipynb
https://github.com/ashhadulislam/augmentdatalib_reg_source/tree/main
https://github.com/ashhadulislam/augmentdatalib_reg_source/tree/main
https://github.com/ashhadulislam/augmentdatalib_reg_source/tree/main
https://pypi.org/project/knnor-reg/
https://github.com/ashhadulislam/augmentdatalib_reg_source/blob/main/example/Example.ipynb
https://github.com/ashhadulislam/augmentdatalib_reg_source/blob/main/example/Example.ipynb
https://github.com/ashhadulislam/augmentdatalib_reg_source/blob/main/example/Example.ipynb


Expert Systems With Applications 252 (2024) 124118S.B. Belhaouari et al.

B

N

R

R

S

S

T

T

T

T

T

V

W

Y

Z

Z

Data availability

Open source Links to codebase has been mentioned in the paper.

Acknowledgments

Open Access funding provided by the Qatar National Library.

References

Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375.

Ali, M. (2020). PyCaret: An open source, low-code machine learning library in Python.
PyCaret version 1.0.

Barupal, D. K., & Fiehn, O. (2019). Generating the blood exposome database using
a comprehensive text mining and database fusion approach. Environmental Health
Perspectives, 127(9), 2825–2830.

Branco, P., Torgo, L., & Ribeiro, R. P. (2016). A survey of predictive modeling on
imbalanced domains. ACM Computing Surveys (CSUR), 49(2), 1–50.

ranco, P., Torgo, L., & Ribeiro, R. P. (2019). Pre-processing approaches for imbalanced
distributions in regression. Neurocomputing, 343, 76–99.

Camacho, L., Douzas, G., & Bacao, F. (2022). Geometric SMOTE for regression. Expert
Systems with Applications, Article 116387.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
synthetic minority over-sampling technique. Journal of Artificial Intelligence Research,
16, 321–357.

Derrac, J., Garcia, S., Sanchez, L., & Herrera, F. (2015). Keel data-mining software tool:
Data set repository, integration of algorithms and experimental analysis framework.
Journal of Multiple-Valued Logic and Soft Computing, 17.

dos Santos Coelho, L., Hultmann Ayala, H. V., & Cocco Mariani, V. (2024). CO and
NOx emissions prediction in gas turbine using a novel modeling pipeline based on
the combination of deep forest regressor and feature engineering. Fuel, 355, Article
129366.

Douzas, G., & Bacao, F. (2019). Geometric SMOTE a geometrically enhanced drop-in
replacement for SMOTE. Information Sciences, 501, 118–135.

Elhassan, T., & Aljurf, M. (2016). Classification of imbalance data using tomek link
(t-link) combined with random under-sampling (rus) as a data reduction method.
Global Journal of Technolology and Optimization S, 1, 2016.

Elor, Y., & Averbuch-Elor, H. (2022). To SMOTE, or not to SMOTE? arXiv preprint
arXiv:2201.08528.

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018).
Learning from imbalanced data sets: vol. 10, Springer.

Gan, D., Shen, J., An, B., Xu, M., & Liu, N. (2020). Integrating TANBN with
cost sensitive classification algorithm for imbalanced data in medical diagnosis.
Computers & Industrial Engineering, 140, Article 106266.

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017).
Learning from class-imbalanced data: Review of methods and applications. Expert
Systems with Applications, 73, 220–239.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, 21(9), 1263–1284.

Islam, A., & Belhaouari, S. B. (2021). Class aware auto encoders for better feature
extraction. In 3rd International conference on electrical, communication, and computer
engineering (pp. 1–5). IEEE.

Islam, A., Belhaouari, S. B., Rehman, A. U., & Bensmail, H. (2022a). K nearest neighbor
OveRsampling approach: An open source python package for data augmentation.
Software Impacts, 12, Article 100272.

Islam, A., Belhaouari, S. B., Rehman, A. U., & Bensmail, H. (2022b). KNNOR: An
oversampling technique for imbalanced datasets. Applied Soft Computing, 115,
Article 108288.

Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class
imbalance. Journal of Big Data, 6(1), 1–54.

Juez-Gil, M., Arnaiz-González, Á., Rodríguez, J. J., & García-Osorio, C. (2021).
Experimental evaluation of ensemble classifiers for imbalance in big data. Applied
Soft Computing, 108, Article 107447.
19
Kohler, M., & Langer, S. (2021). On the rate of convergence of fully connected deep
neural network regression estimates. The Annals of Statistics, 49(4), 2231–2249.

Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future
directions. Progress in Artificial Intelligence, 5(4), 221–232.

Kubat, M., Matwin, S., et al. (1997). Addressing the curse of imbalanced training sets:
one-sided selection. In International conference on machine learning: vol. 97, (pp.
179–186). Morgan Kaufmann.

Laza, R., Pavón, R., Reboiro-Jato, M., & Fdez-Riverola, F. (2011). Evaluating the effect
of unbalanced data in biomedical document classification. Journal of Integrative
Bioinformatics, 8(3), 105–117.

Liu, N., Shen, J., Xu, M., Gan, D., Qi, E.-S., & Gao, B. (2018). Improved cost-sensitive
support vector machine classifier for breast cancer diagnosis. Mathematical Problems
in Engineering, 2018, 1–13.

Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2008). Exploratory undersampling for class-imbalance
learning. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics),
39(2), 539–550.

Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., & Zafeiriou, S. (2017).
Agedb: the first manually collected, in-the-wild age database. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops (pp. 51–59).

atekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in
Neurorobotics, 7, 21.

ifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of the 28th
international conference on international conference on machine learning (pp. 833–840).
Omni Press.

othe, R., Timofte, R., & Van Gool, L. (2018). Deep expectation of real and apparent
age from a single image without facial landmarks. International Journal of Computer
Vision, 126(2–4), 144–157.

egal, M. R. (2004). Machine learning benchmarks and random forest regression.
eScholarship.

un, Y., Wong, A. K., & Kamel, M. S. (2009). Classification of imbalanced data: A
review. International Journal of Pattern Recognition and Artificial Intelligence, 23(04),
687–719.

hanathamathee, P., & Lursinsap, C. (2013). Handling imbalanced data sets with
synthetic boundary data generation using bootstrap re-sampling and AdaBoost
techniques. Pattern Recognition Letters, 34(12), 1339–1347.

orgo, L., Branco, P., Ribeiro, R. P., & Pfahringer, B. (2015). Resampling strategies for
regression. Expert Systems, 32(3), 465–476.

orgo, L., & Ribeiro, R. (2007). Utility-based regression. In PKDD 2007: 11th European
conference on principles and practice of knowledge discovery in databases: vol. 7, (pp.
597–604). Springer.

orgo, L., Ribeiro, R. P., Pfahringer, B., & Branco, P. (2013). Smote for regression.
In Progress in artificial intelligence: 16th portuguese conference on artificial intelligence
(pp. 378–389). Springer.

unçay, T., Alaboz, P., Dengiz, O., & Başkan, O. g. (2023). Application of regression
kriging and machine learning methods to estimate soil moisture constants in a
semi-arid terrestrial area. Computers and Electronics in Agriculture, 212, Article
108118.

apnik, V., & Vapnik, V. (1998). Statistical learning theory wiley. New York, 1(624),
2.

ang, Y., Yao, H., & Zhao, S. (2016). Auto-encoder based dimensionality reduction.
Neurocomputing, 184, 232–242.

ang, Y., Zha, K., Chen, Y., Wang, H., & Katabi, D. (2021). Delving into deep
imbalanced regression. In Proceedings of the 38th international conference on machine
learning (pp. 11842–11851). MLR Press.

eiler, M. D., Krishnan, D., Taylor, G. W., & Fergus, R. (2010). Deconvolutional
networks. In 2010 IEEE computer society conference on computer vision and pattern
recognition (pp. 2528–2535). IEEE.

hong, J., He, Z., Guan, K., & Jiang, T. (2023). Investigation on regression model
for the force of small punch test using machine learning. International Journal of
Pressure Vessels and Piping, 206, Article 105031.

http://arxiv.org/abs/1803.08375
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb2
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb2
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb2
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb3
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb3
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb3
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb3
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb3
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb4
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb4
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb4
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb5
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb5
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb5
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb6
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb6
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb6
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb7
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb7
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb7
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb7
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb7
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb8
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb8
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb8
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb8
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb8
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb9
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb9
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb9
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb9
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb9
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb9
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb9
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb10
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb10
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb10
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb11
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb11
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb11
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb11
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb11
http://arxiv.org/abs/2201.08528
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb13
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb13
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb13
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb14
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb14
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb14
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb14
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb14
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb15
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb15
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb15
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb15
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb15
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb16
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb16
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb16
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb17
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb17
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb17
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb17
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb17
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb18
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb18
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb18
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb18
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb18
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb19
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb19
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb19
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb19
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb19
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb20
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb20
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb20
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb21
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb21
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb21
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb21
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb21
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb22
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb22
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb22
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb23
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb23
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb23
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb24
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb24
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb24
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb24
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb24
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb25
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb25
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb25
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb25
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb25
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb26
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb26
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb26
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb26
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb26
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb27
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb27
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb27
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb27
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb27
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb28
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb28
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb28
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb28
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb28
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb29
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb29
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb29
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb30
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb30
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb30
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb30
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb30
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb30
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb30
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb31
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb31
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb31
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb31
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb31
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb32
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb32
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb32
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb33
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb33
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb33
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb33
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb33
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb34
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb34
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb34
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb34
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb34
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb35
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb35
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb35
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb36
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb36
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb36
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb36
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb36
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb37
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb37
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb37
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb37
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb37
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb38
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb38
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb38
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb38
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb38
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb38
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb38
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb39
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb39
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb39
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb40
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb40
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb40
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb41
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb41
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb41
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb41
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb41
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb42
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb42
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb42
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb42
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb42
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb43
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb43
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb43
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb43
http://refhub.elsevier.com/S0957-4174(24)00984-9/sb43

	Oversampling techniques for imbalanced data in regression
	Introduction
	Presentation of the problem and related work
	Problem Description
	Literature Review
	SMOTE Based Imbalanced Regression
	K Nearest Neighbor OveRsampling approach (KNNOR)
	Deep Learning in Imbalanced Regression
	AutoEncoders


	Material and Methods
	Methods
	KNNOR - Regression (KNNOR-Reg) - [Low population data]
	KNNOR-Deep Regression (KNNOR-DeepReg) — [High population data] 
	Target Aware AutoEncoders - [High population, high-dimension data] 
	Target Aware AutoInflaters - [High population, low-dimension data] 
	Exponential Loss Function [Applicable to Target Aware Auto Encoders/Inflaters] 

	Multi-level Auto Encoder - [Image data] 
	Approach Summary

	Summary

	Results and Discussion
	Experiment Design
	Evaluation Process and Metrics
	Augmentation Framework

	Results
	Experimenting with Strong and Weak Regressors
	Testing with additional models

	Conclusion and Future Work
	Future Research Directions

	Code availability
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


