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Exploring new horizons 
in neuroscience disease detection 
through innovative visual signal 
analysis
Nisreen Said Amer * & Samir Brahim Belhaouari 

Brain disorders pose a substantial global health challenge, persisting as a leading cause of mortality 
worldwide. Electroencephalogram (EEG) analysis is crucial for diagnosing brain disorders, but it 
can be challenging for medical practitioners to interpret complex EEG signals and make accurate 
diagnoses. To address this, our study focuses on visualizing complex EEG signals in a format 
easily understandable by medical professionals and deep learning algorithms. We propose a novel 
time–frequency (TF) transform called the Forward–Backward Fourier transform (FBFT) and utilize 
convolutional neural networks (CNNs) to extract meaningful features from TF images and classify 
brain disorders. We introduce the concept of eye-naked classification, which integrates domain-
specific knowledge and clinical expertise into the classification process. Our study demonstrates the 
effectiveness of the FBFT method, achieving impressive accuracies across multiple brain disorders 
using CNN-based classification. Specifically, we achieve accuracies of 99.82% for epilepsy, 95.91% 
for Alzheimer’s disease (AD), 85.1% for murmur, and 100% for mental stress using CNN-based 
classification. Furthermore, in the context of naked-eye classification, we achieve accuracies of 78.6%, 
71.9%, 82.7%, and 91.0% for epilepsy, AD, murmur, and mental stress, respectively. Additionally, 
we incorporate a mean correlation coefficient (mCC) based channel selection method to enhance the 
accuracy of our classification further. By combining these innovative approaches, our study enhances 
the visualization of EEG signals, providing medical professionals with a deeper understanding of TF 
medical images. This research has the potential to bridge the gap between image classification and 
visual medical interpretation, leading to better disease detection and improved patient care in the 
field of neuroscience.

Brain disorders are a growing global health concern, particularly in low- and middle-income countries. Deaths 
and disabilities from brain disorders have surged by 39% and 15% in the last 3 decades, making them the second 
leading cause of global mortality, resulting in approximately 9 million deaths annually, as shown in Fig. 1. Access 
to neurological disorder services and support remains inadequate, especially in less affluent nations.

In response to this alarming trend, the World Health Organization (WHO) endorsed an action plan at the 
75th World Health Assembly in May 2022. This plan focuses on improving diagnosis, treatment, care, research, 
and innovation while strengthening information systems for brain disorders. Our research aligns with the WHO’s 
strategic plan, aiming to automatically and accurately diagnose brain disorders using a novel technique. Electro-
encephalogram (EEG) signals provide valuable information about brain health but suffer from low amplitude, 
high noise, and limited interpretability1. While ML/DL models show promise in diagnosing brain diseases from 
EEG, they face challenges with limited datasets, inter-subject variability2, and generalization3. Many studies have 
explored automatic diagnosis of brain disorders from EEG signals, such as stroke in elders4, Parkinson’s disease 
(PD)5, Alzheimer’s6, autism7, and ADHD8. However, most focus on event-related potentials (ERPs) or Fourier-
based power analyses, which have limitations in capturing the full spectrum of EEG data9.

To address these challenges, our research employs time–frequency (TF) transformations to enhance the 
visualization and interpretation of EEG data. This improved representation enables accurate classification using 
machine learning (ML) and deep learning (DL) models, aiding pathologists and neurologists.
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Our research focuses on transforming complex EEG signals into interpretable representations, bridging the 
gap between DL models and medical professionals’ expertise. This empowers doctors to make more informed 
decisions based on visual data. This combined approach of visual interpretation and DL-based classification 
yields improved results.

Key contributions of our work include:

•	 Channel selection method based on mean correlation coefficients (mCC): We propose a channel selection 
method that identifies key EEG channels for brain disorder classification using mCC. This method helps 
improve the accuracy of classification.

•	 Transformation of EEG signals into 2D images using the Forward–Backward Fourier transform (FBFT): 
We enhance the interpretation of EEG signals by transforming them into 2D images using the novel FBFT 
technique. We compare this technique with other time–frequency transforms to demonstrate its effectiveness.

•	 Concatenation of time–frequency images from selected channels: We propose a method to concatenate time–
frequency images from selected channels into a single input for ML/DL models. This approach improves the 
classification accuracy of brain disorders.

•	 Analysis and comparison of pre-trained DL models: We analyze and compare pre-trained DL models for 
diagnosing brain disorders using FBFT-transformed EEG images. This analysis helps identify the most effec-
tive models for accurate classification.

•	 Naked-eye diagnosis approach: We propose a naked-eye diagnosis approach for brain disorders based on 
time–frequency images obtained through FBFT. This approach integrates visual interpretation with DL-based 
classification, improving diagnostic accuracy.

Several deep learning methods have been proposed for brain disorder’s classification10–12, but none of these 
methods have analyzed the models on different time–frequency transformed images of EEG. Additionally, most 
of these methods focus on diagnosing a single brain disorder from EEG Signals.

In this paper, we revolutionize EEG visual interpretation and provide novel time–frequency images for deep 
learning models. These images enhance diagnostic accuracy and foster effective collaboration between humans 
and machines, advancing medical imaging and diagnosis significantly. Our proposed models outperform the 
state-of-the-art in disease diagnosis.

Related work
In the realm of epileptic seizure classification, various innovative methodologies have been proposed, each offer-
ing distinct contributions to the field.

The authors of13 introduced a novel approach for epileptic seizure classification, utilizing Discrete Fourier 
Transform (DFT) and an Attention Network AttVGGNet. The method achieved an accuracy of 95.6% and other 
notable performance metrics. Similarly, the authors of14 improved epilepsy diagnosis accuracy using EEG record-
ings by combining DFT with brain connectivity measures and feeding the data into an Autoencoder Neural 
Network. The approach achieved an accuracy of 97.91%, sensitivity (SENS) of 97.65%, and specificity (SPEC) of 
98.06%. In15, spectrogram and scalogram images from Short Time Fourier Transform (STFT) were employed 
for ictal-preictal-interictal classification using a Convolutional Neural Network (CNN), achieving 97% accuracy. 
Researchers like16 and17 also used CNNs for EEG classification from STFT, achieving accuracies of 91.71% and 
97.75%, respectively. Utilizing Discrete Wavelet Transform, the authors of18 achieved an accuracy of 95.6% in 
ictal-interictal EEG signal classification. In19, an adaptive approach with Pattern Wavelet Transform and a Fuzzy 

Figure 1.   Proportional contribution of various brain disorders to the overall burden of neurological disorders: 
(a) Proportions (%) of disability-adjusted life-years and (b) deaths.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4217  | https://doi.org/10.1038/s41598-024-54416-y

www.nature.com/scientificreports/

classifier achieved ACC of 96.02% and SPEC of 94.5% for ictal-interictal classification. The authors of20 used a 
hybrid of DWT and LDA classifier, resulting in an accuracy of 99.6% and SENS of 99.8% for the ictal-interictal 
problem. In21, the authors proposed a multiscale short-time Fourier transform for feature extraction coupled 
with a 3D convolutional neural network. The approach demonstrated accurate seizure detection with a 14.84% 
rectified predictive ictal probability error and a 2.3s detection latency.

Several studies have shown promising outcomes in identifying neurological disorders like Alzheimer’s disease 
(AD) to enhance the quality of life for affected individuals. The authors of22 implemented a method using tech-
niques for extracting distinctive attributes and categorizing EEG, achieving accuracies differentiating between 
AD patients, those with mild AD, and individuals in a healthy group. They utilized scalograms generated from 
Fourier and Wavelet Transforms, achieving accuracies of 83% for AD versus normal cases, 92% for healthy ver-
sus mild AD cases, and 79% for mild versus AD classification scenarios. The authors of23 used time-dependent 
power spectrum descriptors for CNN input, achieving an accuracy of 82.30% in a dataset of 64 AD, 64 MCI, 
and 64 HC subjects. Similarly, the authors of24 collected resting-state EEG signals from individuals with mild 
cognitive impairment (MCI), AD, and healthy controls (HC). They used functional connectivity measures from 
EEG data as input for a convolutional neural network (CNN), achieving recognition accuracy rates of 93.42% 
for MCI and 98.54% for AD.

Commencing with stress detection, notable studies have employed advanced techniques to identify and 
classify emotional states based on EEG data accurately. The authors of25 explored stress detection using the 
DEAP dataset, employing power spectrum-based feature extraction on all 32 channels with 5-second windows. 
The AlexNet architecture was utilized for classification, distinguishing between calm and distressed emotional 
states with an accuracy of 84%. The authors of26 conducted stress detection using EEGMAT data, applying the 
Discrete Wavelet Transform (DWT) to 19 out of 23 EEG channels. The classification, facilitated by a Convo-
lutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BLSTM) architecture, successfully 
differentiated between stressed and relaxed states, achieving an impressive accuracy of 99.2%. Similarly, the 
authors of27 employed the SEED dataset, combining filtering and a music model for feature extraction across 
all 62 EEG channels. Using an Artificial Neural Network (ANN), they classified emotions into neutral, positive, 
and negative categories, achieving an impressive accuracy of 97%. Another noteworthy study in28 utilized the 
DASPS dataset, employing power spectrum-based feature extraction on all 14 EEG channels. The classification, 
performed in 1-second windows with a total duration of 15 seconds, utilized K-Nearest Neighbors (KNN) to 
distinguish between binary and four-class anxiety levels, achieving an accuracy of 83.8%.

For the heart murmur, author29 conducted a study employing feature extraction through Fast Fourier Trans-
form (FFT) on 942 cases with 6 EEG channels. The dataset was segmented into 4-second intervals with a 1-sec-
ond overlap. The authors applied a combination of deep learning models, specifically DBResNet and XGBoost, 
achieving accuracies of 76.2% and 82%, respectively. Subsequently, the authors of30 utilized a convolutional 
neural network (CNN) for feature extraction. This study reported an enhanced classification accuracy of 87.2%. 
The authors of31 extended the investigation, focusing on an unspecified feature extraction method for the 942 
cases. The study adopted an all-inclusive approach by considering all EEG channels and applying a CNN for 
classification, yielding an accuracy of 75.7%.

Methodology
Our approach encompasses multiple steps, including EEG dataset collection for various brain disorders, signal 
pre-processing, TF analysis for 2D image generation, deep learning (DL), and human visual classification, as 
illustrated in Fig. 2. We’ve implemented this approach in Python, utilizing pre-trained neural network models 
on TF images from brain disorders such as epilepsy, Alzheimer’s, murmur, and stress EEG. Model evaluation 
employs established performance metrics.

Data description and pre‑processing
EEG signals of subjects with various brain disorders, including epilepsy, Alzheimer’s, murmur, and stress, are 
analyzed in this study. For the diagnosis of epilepsy, the CHBMIT dataset developed in Boston Children’s Hos-
pital is used32. 23 channels EEG sampled at 256 samples/s are recorded from 22 subjects, 5 males and 17 females, 
aged between 1.5 and 22 years old. For stress, we utilized the dataset by Bird et al.33, recorded using a Muse 
headband with four dry EEG sensors (TP9, AF7, AF8, and TP10). It covers three mental states: relaxed, neutral, 

Figure 2.   Flowchart of the proposed model for brain disorders classification from EEG signals.
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and concentrating, comprising 25 recordings from five participants, each with two-minute sessions for each 
mental state.

For diagnosing Alzheimer’s disease (AD), we utilized the Open-Neuro dataset, comprising EEG data from 28 
participants at the Department of Neurology, AHEPA General University Hospital of Thessaloniki, Greece. These 
participants were categorized into three groups: Alzheimer’s disease patients (AD), frontotemporal dementia 
patients (FTD), and a control group (CN) consisting of healthy age-matched adults34. The EEG signals were 
sampled at 500 Hz with a resolution of 10 V/mm, and the duration of EEG recordings varied across groups.

The study also covers heart murmurs, utilizing the MIT Physionet dataset35. This dataset comprises heart 
sound recordings collected during screening campaigns in Northeast Brazil in 2014 and 201536. It includes 
recordings for 1568 participants, ranging from 5 to 45 seconds in length, resulting in 5272 recordings. The 
recordings are categorized by the valve’s location (PV, AV, MV, TV, or other), and each participant is labeled for 
the presence, absence, or unknown status of heart murmurs.

EEG channels selection using Pearson’s correlation coefficient
Channel selection is crucial to effectively diagnose brain disorders from multi-channel EEG datasets. While 
using all channels is an option, it often results in redundancy, increased feature count, computational complexity, 
and memory demands37. Hence, selecting a subset of channels is a recommended practice. This selection can 
be performed visually by a neurophysiologist or through an automated algorithm. In our approach, we propose 
a correlation-based method. Initially, the correlation coefficient between two EEG channels, denoted as x1 and 
x2 , is computed as follows:

where n is the total number of samples, x1 and x2 are the mean and xi1 , xi2 are the ith samples of the two chan-
nels. This correlation coefficient is computed for each channel with all other channels, resulting in a correlation 
matrix (CorrMat) given as follows:

The mean correlation coefficient for each channel is calculated by computing the mean of each column in the 
CorrMat. Examples of the CorrMat and mean values for two randomly selected subjects, one with seizures and 
one without, are shown in Fig. 3. Channels with low mean correlation coefficients are selected and further vali-
dated by neurophysiologists. Highly correlated channels may capture redundant information, increasing noise 
and reducing classification accuracy. In contrast, uncorrelated channels provide unique information, improving 
accuracy. For the two subjects in Fig. 3, the channels with the lowest mean correlation coefficients are identified 
as FZ-CZ, FT9-FT10, FT10-T8, T7-FT9, and are selected for further feature extraction.

Time–frequency (TF) analysis to transform the EEG signals to 2D images
Time–frequency analysis (TF) of EEG signals offers advantages over both time and frequency domain analyses38. 
It tracks changes in brain wave amplitude and phase across time and frequencies, enhancing interpretability by 
measuring fundamental brain properties. TF analysis transforms signals into informative 2D time–frequency 
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images, revealing variations among brain disorders, easily classifiable using deep CNN models. Previous studies 
have focused on a single TF method to create 2D scalogram images39,40. Common TF techniques include Short-
time Fourier Transform (STFT)41, continuous wavelet transform (CWT)42, discrete wavelet transform (DWT)43, 
Hilbert transform (HT)44, and empirical mode decomposition (EMD)45.

Each TF method has its pros and cons. For instance, STFT is computationally efficient but can produce 
blurred TF representations due to windowing. Wavelet transforms offer precision but can be computationally 
demanding. The Hilbert transform is relatively straightforward but noise-sensitive, while EMD is robust but 
more complex to implement and interpret.

To address these limitations, we introduce the novel FBFT transform, providing superior 2D TF image visu-
alization, detailed in the next subsection.

The FBFT transform
The Forward–Backward Fourier Transform (FBFT) process is a sophisticated signal processing technique 
employed to extract critical time information from Electroencephalogram (EEG) signals in the domain of brain 
activity analysis. This multifaceted method encompasses several essential steps. Initially, the EEG signal is par-
titioned into subarrays for streamlined processing. Subsequently, zero padding is applied to these subarrays, 
extending the signal’s length and enhancing the frequency analysis’s precision. The Fast Fourier Transform (FFT) 
is then executed on these zero-padded subarrays, facilitating the conversion of the signal from the time domain 
to the frequency domain for detailed analysis of its frequency components. The FBFT procedure involves an 
in-depth analysis of the minimum magnitude values resulting from both the forward and backward transforma-
tions, aiding in identifying dominant frequency components in the EEG signal. This comprehensive methodol-
ogy allows for extracting essential spectral and time-varying features from EEG signals by eliminating signal 
frequency harmonies. This process provides valuable insights for disease diagnosis and analysis in neuroscience 
research. The FBFT process, which encapsulates the Forward–Backward Fourier Transform, can be mathemati-
cally represented by the following equation:

Where X(f, u) represents the result of the operation or transformation for a given frequency f and time u, f rep-
resents the signal frequency, u represents the time variable, e is the mathematical constant that represents the 
base of the natural logarithm, j is an imaginary unit, x(t) is the input signal as a function of time t, 1{t<u} is an 
indicator function that equals 1 if t belongs to the interval u and is zero otherwise. The mathematical foundation 
is further elucidated below.

Fourier transform The Fourier Transform is a powerful tool in signal processing and mathematics used to 
convert a signal from its original time or space domain into the frequency domain. The equation for the Fourier 
Transform is:

Inverse Fourier transform The Inverse Fourier Transform converts the frequency-domain signal back into its 
original time-domain form. This process is crucial for understanding how a signal can be reconstructed from 
its frequency components. It is given by the equation:

Unit function This function is fundamental in signal processing for representing binary states or switches.

Fourier transform of unit function

Where

δ(f ) is called Dirac Delta function and is crucial in sampling and reconstructing signals. It is infinitely high at 
f = 0 and zero elsewhere, with the integral over a small region around zero equal to 1.

Time-shifted Fourier transform For a time-shifted signal, if Fourier transform of x(t) is x(f)
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If we put:

Fourier transform of 1− U(t − t0) :

It results in a combination of the delta function and a phase-shifted inverse frequency term.
Figure 4 visually demonstrates FBFT’s effectiveness in EEG signal analysis, offering insights into both time 

and frequency domains. It showcases FBFT’s ability to provide a comprehensive representation of a combined 
signal with frequencies of 10, 20, and 60, aiding in the understanding of the signal’s time-varying behavior and 
frequency component distribution.

Figure 5 demonstrates FBFT for forward and backward signal analysis applied to a simulated EEG signal. The 
accompanying pseudocode in Table 1 outlines the FBFT process for practical implementation.

Figure 6 provides a comparative analysis between FBFT, traditional signal processing techniques such as 
FFT41, Continuous Wavelet Transform (CWT)42, Discrete Wavelet Transform (DWT)43, the Power Spectrum 
(PS)46, and the Progressive Fourier Transform (PFT)47 when applied to a composite signal with known frequency 
components. FBFT distinguishes itself by its impressive capability to achieve precise time–frequency localization. 
In contrast, while FFT provides frequency information, it lacks the precision to pinpoint these frequency compo-
nents in the time domain precisely. The Progressive Fourier Transform (PFT) technique enables the extraction 
of time–frequency-related insights from signals, but it doesn’t provide the same level of precision as FBFT when 
pinpointing and accurately characterizing frequency components within the time domain. Similarly, although 
CWT and DWT offer improved time–frequency resolution compared to FFT, they may still have limitations in 
capturing subtle shifts in the signal. The Power Spectrum (PS) represents another valuable analysis tool, illus-
trating the frequency content of the signal, but it may not provide the same time–frequency precision as FBFT. 
This illustrates the distinct advantages of FBFT in EEG signal analysis, combining the benefits of both time and 
frequency domain analysis, allowing for precise localization of frequency components.

CNN‑based classification of brain disorders
Deep learning, particularly CNNs, excels in pattern recognition and image classification, automatically extracting 
features from raw input images48. CNNs, including AlexNet49, GoogLeNet50, and SqueezeNet51, were employed 
for brain disorder diagnosis. These models have fixed input sizes: 256 × 256 × 3 for AlexNet, 224 × 224 × 3 for 
GoogleNet, and 227 × 227 × 3 for SqueezeNet. Input images were resized using cubic interpolation for each 
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Figure 4.   FBFT on a combined signal with frequencies 10, 20, and 60.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4217  | https://doi.org/10.1038/s41598-024-54416-y

www.nature.com/scientificreports/

dataset. Random augmentations, such as flipping, translating, and scaling, were applied during training. Key 
parameters included the ADAM optimization algorithm, a mini-batch size of 16, an initial learning rate of 0.0001, 
and a maximum of 50 epochs. Model performance was assessed using metrics like accuracy, F1 score, sensitivity, 
recall, and precision, with an 80–20% train/test split.

Figure 5.   Using FBFT to analyze the signal.

Figure 6.   A synthetic composite signal with three oscillations of different frequencies combined at different 
timings and its corresponding plots in time domain (i.e. (t vs x(t) top row), frequency domain (FFT, PSD) and 
TF CWT and DWT in the middle row, the PFT and the proposed TF plot using FBFT in the bottom row.
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Naked‑eye classification of brain disorders using TF images of EEG
Our study primarily focuses on visually classifying brain diseases using transformed EEG images, a vital com-
ponent to enhancing disease understanding and detection through visual and deep learning techniques. As part 
of our study, we conducted a brief 4-5 minute survey. Volunteers assess reference images of brain diseases (e.g., 
epilepsy, Alzheimer’s) and normal ones without disease indicators. Participants are initially tasked with visu-
ally studying these labeled images to identify distinct patterns or distinguishing features corresponding to each 
label. Subsequently, they are asked to provide their own judgment regarding whether an image appears normal 
or abnormal. Throughout this survey, we strictly adhere to ethical standards, encompassing informed consent, 
data privacy, voluntary participation, and institutional ethical approval. Our survey aims to collect valuable input 
and insights from participants, significantly contributing to the development of practical approaches for health-
care practitioners in the visual analysis-based detection of brain and heart diseases. The experimental protocols 
utilized in this study were approved by Hamad Bin Khalifa University Institutional Review Board (HBKU-IRB) 
under the reference number ’HBKU-IRB-2024-68’. The HBKU-IRB, as the named institutional review commit-
tee, conducted a comprehensive review in line with ethical standards and regulatory requirements. Participants 
provided informed consent, and the study was conducted in adherence to the approved protocols and principles 
covered in the CITI program.

Results
The main goal of this research is to improve the interpretability of EEG signals by using the novel FBFT trans-
form to convert them into time–frequency (TF) images. This transformation enhances the accuracy of visual 
inspection and deep learning-based classification of brain diseases. By representing brain activity as sinusoidal 
oscillations instead of voltage changes at specific time points, we gain a better understanding of EEG signals. 
These sinusoidal wave-like patterns capture brain oscillations, and TF analysis provides insights into their fre-
quency, amplitude, and phase over time.

For illustration, this study generates two types of TF images from the signals. The RGB and concatenating 
images to generate scalo- grams or spectrograms for each time-framed window of EEG data, as illustrated in 
Fig. 2. Table 2 shows an example of TF analysis and its corresponding 2D TF images for the stress dataset. Fur-
thermore, Table 3 displays the FBFT images for the four datasets used in this study.

In parallel with these visual representations, three pre-trained models—GoogleNet, SqueezeNet, and 
AlexNet— were employed to diagnose various brain disorders. Performance metrics are summarized in Table 4, 
and Fig. 7a shows the confusion matrices for the best models. For epileptic seizure diagnosis32, the four selected 
channels ’T7-FT9/FT9-FT10/FT10-T8/’FZ-CZ’ were converted to TF RGB images using the proposed FBFT 
transform with a 1-second time window and 0.25-second overlap. The accuracies achieved by the three models 
were 99.56%, 99.82%, and 99.39%, respectively. For Alzheimer’s disease diagnosis52, six optimal channels P3/
O2/T6/O1/F8/Pz were selected, and the FBFT with a 2-second time window and 1.5-second overlap was applied 
to obtain RGB TF images. The models achieved accuracies of 95.91%, 93.03%, and 91.72%, respectively. In the 
context of murmur detection, the MIT Physionet dataset is used, which contains heart sound recordings35. 
Following the removal of NaN values, the FBFT transform was applied to the selected four channels ’PV, TV, 
MV, and AV’, resulting in TF images for both murmur and no murmur classes. The models achieved accuracies 
of 85.1%, 81.56%, and 79.64%, respectively. For automatic detection of stress33, four channels ’TP9, AF7, AF8, 
and TP10’ were transformed to TF images using the proposed FBFT transform, with a 1-second time window 
and no overlap. The three pre-trained models achieved accuracies of 100%, 99.36%, and 99.36%, respectively.

Another significant contribution of this research involved the visual classification of brain disorders by medi-
cal experts without relying on automated algorithms. A survey with 125 participants was conducted. They visu-
ally classified disorders by examining novel FBFT images of EEG signals related to the four datasets. The survey 
included the classification of 10,000 images, resulting in overall accuracies of 78.6%, 71.9%, 82.7%, and 91.0% for 
epilepsy, Alzheimer’s disease (AD), murmurs, and mental stress, respectively. Detailed classification outcomes 
are presented in the confusion matrix in Fig. 7b.

Table 1.   Pseudocode FBFT.

Step Description

1 Initialize an empty list M to store intermediate results.

2 Iterate over each index u in the range of the length of the signal array.

3 Slice the signal array from the beginning up to index u+1 and assign it to H.

4 Apply the Fast Fourier Transform (FFT) to H.

5 Append the result to the M list.

6 Initialize an empty list M1 to store reverse iteration results.

7 Iterate over each index u in the range of the length of the signal array.

8 Slice the signal array from -u-1 to the end and assign it to H1.

9 Apply the FFT to H1.

10 Append the result to the M1 list.

11 Compute the element-wise minimum between the reversed M1 and M lists.

12 Return the resulting array as min_values.
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Discussion
This study introduces FBFT, a novel method for transforming EEG signals into time–frequency (TF) images, 
enhancing their visual interpretability. These TF images are then used to train pre-trained CNN models for 
diagnosing epilepsy, Alzheimer’s disease, murmurs, and mental stress. Additionally, we explore manual classi-
fication by visually inspecting TF images, demonstrating the effectiveness of our models. Table 5 compares our 
model’s performance with existing methods for diagnosing these disorders. Our pre-trained models, utilizing 
FBFT-based TF images from just four to six EEG channels, consistently outperform alternatives in accuracy. This 
study also introduces a manual classification approach using TF images, showcasing its effectiveness. Expanding 
our approach to diverse neurological disorders presents challenges, including adapting to inherent EEG signal 
variability and securing representative datasets. The necessity for diverse datasets for each disorder may pose 
challenges in data availability. Considerations for generalization involve addressing individual variations in brain 

Table 2.   Sample images of TF transforms applied to EEG from the stress dataset33.
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activity and potential use of disorder-specific feature extraction techniques. Computational demands of the FBFT 
and CNN models may increase, requiring optimizations for scalability. Addressing these challenges involves 
thoroughly understanding each disorder’s unique characteristics and continuous methodology refinement. While 
promising for specific disorders, applying the method to a broader range requires addressing challenges related 
to variability, dataset diversity, and computational efficiency. These considerations offer a nuanced view of the 
method’s applicability, signaling areas for future research and development.

The initial survey, involving 125 participants, has yielded promising accuracy, serving as a foundation for 
future research endeavors. Subsequent investigations will encompass more extensive participant cohorts and 
heightened statistical analyses. Although our current methodology demonstrates proficiency in classifying four 

Table 3.   Sample images for different datasets generated using Forward Backward Fourier Transform (FBFT).

Table 4.   Performance Metrics for FBFT-based CNN Models.

Dataset CNN Acc. Prec. Sen. F1 score

Stress33 GoogleNet 100

1 1 1

1 1 1

1 1 1

Murmur36 GoogleNet 85.1
0.8584 0.8469 0.8526

0.8435 0.8553 0.8494

ALZ52 GoogleNet 95.91
0.9601 0.9620 0.9611

0.9581 0.9559 0.9570

CHBMIT32 SqueezeNet 99.82
0.9983 0.9983 0.9983

0.9982 0.9982 0.9982
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Table 5.   Comparison of the proposed models with SOTA for the diagnosis of epileptic seizure, AD, murmur, 
and stress. Significant values are in (bold).

Year Author DataSet Features extraction No. of cases
No. of EEG 
channels EEG segmentation Classifier Accuracy (%)

2023 53 Epilepsy32 FFT 22 22 1s/0.5s SVM 97.7

2023 54 Epilepsy32 Sparse CSP 7 19 1s/no ASTF 98.81

2023 55 Epilepsy32 WT + PS 22 18 2s/no CNN 94.5

2022 56 Epilepsy32 EMD 22 22 10s/no MLPNN 99.57

2023 57 Epilepsy32 STN 22 20 4s/2s KNN, RF 97.81

2022 58 Epilepsy32 DWT 23 22 30s/1s SVM 96.38

Our method Epilepsy32 FBFT 22 4 1s/0.25s
GoogleNet
AlexNet
SqueezeNet

99.56
99.39
99.82

2020 59 Stress33 SF 5 4 – MLP 97.18

2021 60 Stress33 SF 5 4 – SVM 91.6

2021 61 Stress33 SF 5 4 RF 96.69

Our method Stress33 FBFT 5 4 1s/no
GoogleNet
AlexNet
SqueezeNet

100
99.36
99.36

2022 29 Murmur36 FFT 942 6 4s/1s DBRes
ResNet, XGBoost

76.2
82

2022 30 Murmur36 942 CNN 87.2

2023 31 Murmur36 NA 942 All - CNN 75.7

Our method Murmur36 FBFT 140 4 1s/no
GoogleNet
AlexNet
SqueezeNet

85.1
79.64
81.65

2021 52 AD52 SF AD(10) FTD(10) 
CN(8) 19 5s/2.5s RF (FTD/CN) 86.3

2023 62 AD52 SVD AD(10) FTD(10) 
CN(8) 19 4s/2s DT (AD/CN)

LGBM (AD/CN)
78.5
79.64

2023 63 AD52 DWT AD(36) FTD(23) 
CN (29) 19 30s/15s FTD/CN

Novel DICE
82.67
83.28

Our method AD52 FBFT AD(10) CN(8) 6 2s/1.5s
GoogleNet AD/CN
AlexNet AD/CN
SqueezeNet AD/CN

95.91
93.03
91.72

Figure 7.   Confusion matrices for: (a) best CNN models and (b) Manual visual classification.
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specific disorders, its applicability extends to a broader spectrum of neurological conditions using EEG data. 
However, we acknowledge the necessity for validation in such expansions. Recognizing the critical nature of 
visual classification by medical professionals, our study diligently addresses the associated reliability and potential 
biases. We openly acknowledge the constraints of subjective interpretation, emphasizing the importance of inter-
rater reliability assessments, and recognizing the impact of individual expertise on classification accuracy. To 
foster transparency and mitigate biases, we have expanded our discussion on ethical considerations, elucidating 
survey details such as participant numbers, duration, and specific instructions. Furthermore, we advocate for 
the continued enhancement of our manual classification approach by integrating additional diagnostic criteria 
and comparative analyses with automated algorithms. Detailed insights into classification outcomes, presented 
in Fig. 7b, offer valuable perspectives on observed patterns in the confusion matrix. Our outlined future research 
plans underscore a commitment to larger participant pools, more robust statistical analyses, and potential exten-
sions to diverse neurological conditions, collectively contributing to a nuanced comprehension of the human 
interpretation and validation processes intrinsic to our study.

Conclusion
In summary, this study presents the Forward Backward Fourier Transform (FBFT), a groundbreaking method 
for transforming EEG signals into interpretable time–frequency (TF) images, showcasing its effectiveness in 
terms of accuracy and computational efficiency, particularly when applied to a limited number of EEG chan-
nels. The proposed FBFT time–frequency transform provides a robust means of converting EEG data into 2D 
images, a critical step in analyzing dynamic signals like EEG. Leveraging these TF images, we employed various 
pre-trained CNN models to diagnose brain disorders, achieving remarkable accuracy rates as detailed in the 
results section. Notably, our approach maintains computational efficiency by focusing on a selected set of EEG 
channels, rendering it practical for real-world applications.

A noteworthy innovation in this research is the introduction of naked-eye-based classification, where human 
experts visually assessed TF images. This manual evaluation achieved noteworthy accuracy rates of 78.6%, 71.9%, 
82.7%, and 91.0% for epilepsy, AD, murmur, and mental stress, respectively, presented in Fig. 7b. This visual 
inspection underscores our method’s potential as a complementary tool for brain disorder diagnosis. Beyond its 
immediate applications, this methodology holds promise for developing advanced EEG-based diagnostic tools 
for various neurological disorders. Our approach is robust, adaptable, and extensible, offering the potential to 
expand the scope of neurological disorders studied and to create real-time applications that assist specialists in 
the efficient and automated identification of various neurological conditions from EEG data. However, several 
limitations should be considered. Firstly, the study focused on specific brain disorders, such as epilepsy, Alz-
heimer’s disease (AD), murmur, and mental stress, leaving room for exploration of its applicability to a more 
comprehensive spectrum of neurological conditions. Additionally, the reliance on pre-trained CNN models, 
while effective, introduces a dependency on the quality and applicability of these models to diverse datasets. It 
is crucial to acknowledge that the accuracy rates achieved, mainly through naked-eye-based classification, may 
vary based on the expertise of human assessors and the inherent subjectivity of visual inspection.

In conclusion, this study introduces the Forward Backward Fourier Transform (FBFT) as a groundbreaking 
method for transforming EEG signals into interpretable time–frequency (TF) images. The research showcases 
its effectiveness, particularly in accuracy and computational efficiency, mainly when applied to a limited num-
ber of EEG channels. The proposed FBFT time–frequency transform serves as a robust means of converting 
EEG data into 2D images, a critical step in analyzing dynamic signals like EEG. Leveraging these TF images, 
our study employed various pre-trained CNN models, achieving remarkable accuracy rates, as detailed in the 
results section. An essential advantage of our approach is its computational efficiency, emphasizing a selected 
set of EEG channels, making it practical for real-world applications. This efficiency ensures quicker and more 
accessible diagnosis, enhancing its potential for widespread clinical use and making it a valuable tool in the realm 
of neurological disorder detection and diagnosis.

As a future direction, we plan to conduct extensive testing across diverse datasets, exploring alternative neural 
network architectures beyond pre-trained CNN models. Additionally, we aim to develop user-friendly interfaces 
for real-time applications, streamlining the efficient and automated identification of neurological conditions 
by healthcare specialists. Collaborative efforts with experts in neurology and related fields will be instrumental 
in refining and validating the methodology across a broad spectrum of neurological disorders. Moreover, we 
anticipate conducting longitudinal studies and clinical trials to thoroughly assess the robustness and reliability 
of our approach in real-world medical scenarios.

Data availibility
The datasets analyzed during the current study are available in specified repositories. The Murmur Dataset can be 
accessed on PhysioNet at [https://​doi.​org/​10.​13026/​g02k-​a047]. The Epilepsy Dataset is available on PhysioNet 
at [https://​doi.​org/​10.​13026/​C2K01R]. The Alzheimer Dataset is stored on OpenNeuro with the persistent web 
link [10.18112/openneuro.ds004504.v1.0.4]. Lastly, the Bird et al. Dataset is hosted on Kaggle, and the data can 
be accessed at [https://​www.​kaggle.​com/​datas​ets/​birdy​654/​eeg-​brain​wave-​datas​et-​mental-​state] The data col-
lected from the survey conducted for this study are not publicly available due to privacy restrictions. However, 
the survey link can be provided upon request for interested individuals to participate in the survey. The findings 
and analysis derived from the survey data will be presented and discussed in this paper without disclosing any 
personally identifiable information. For more information or to request access to the survey link, please contact 
niam27832@hbku.edu.qa.

https://doi.org/10.13026/g02k-a047
https://doi.org/10.13026/C2K01R
https://www.kaggle.com/datasets/birdy654/eeg-brainwave-dataset-mental-state
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