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Abstract—Medical imaging technologies, such as chest X-rays
(CXR), have demonstrated their utility in predicting diseases
with high accuracy using deep learning algorithms. These models
are crucial for identifying critical lung conditions. Nevertheless,
the challenge lies in the resemblance of disease patterns and
symptoms, which may cause misdiagnoses and critical mistakes.
In our research, we introduce a novel technique for feature
extraction from CXR images using an advanced version of the
Radon transform, named the RadEx Transform. This method, by
integrating the extracted features with CXR images, significantly
enhances the learning capability of the models. We focus our
study on the COVID-19 radiography dataset. The results indicate
that our approach of feature extraction markedly increases
accuracy beyond that achieved with raw images alone, surpassing
conventional techniques by significant margins in terms of x, y,
and z. Our research underscores the effectiveness of augmenting
RadEx features with images in elevating the accuracy of lung
disease detection. This approach holds considerable promise
for advancing medical image analysis and diagnostic processes,
marking a significant step forward in the domain.

Index Terms—Radiography, Pulmonary diseases, Transfer
learning, RadEx Transform, Feature extraction, Convolutional
neural networks

I. INTRODUCTION

Chest X-rays (CXRs) are indispensable tools for radiolo-
gists, aiding in the diagnosis of critical conditions affecting
the heart, blood vessels, bones, and particularly the lungs
[1]. Deep learning (DL) techniques, especially through con-
volutional neural networks (CNNSs) like MobileNet [2], Effi-
cientNet [3] and ResNet [4], have significantly advanced the
analysis of CXRs, particularly in disease detection. These DL
models’ efficacy is influenced by various factors including
CNN architecture, data processing, and training methodolo-
gies. Despite the advancements, the classification of diseases
through CXRs faces challenges due to the subtlety of lung
disease patterns and the scarcity of comprehensive datasets,
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which may lead to model overfitting and diagnostic inaccura-
cies [5].

Addressing these challenges, this study introduces a novel
feature extraction technique catered to images with lines and
fissures that need to be detected and highlighted in order
to understand their impact on the decision. We propose the
RadEx Transform, an enhanced feature extraction strategy
designed to improve disease detection in CXRs by refining
data sources and extract meaningful information for more
accurate disease classification. Our approach aims to support
radiologists by providing a more efficient tool for identifying
life-threatening lung diseases through enhanced visual analysis
of CXR images. The rest of this manuscript is structured as
follows. A review of recent literature relevant to the topic is
provided in Section II. Section III provides an introduction to
the Radon transform. Our proposed methodology is elaborated
in detail in Section IV, encompassing the methods and tools
utilized for development, as well as the dataset used for eval-
uation. Section V presents the findings and analysis from our
investigation, followed by the conclusion and future prospects
discussed in the final Section VI.

II. LITERATURE REVIEW

The advent of COVID-19 has placed unprecedented de-
mands on global healthcare systems, necessitating rapid and
accurate diagnostic solutions. In this context, Chest X-rays
(CXRs) have emerged as vital tools for the screening and
monitoring of COVID-19, given the virus’s pronounced effects
on pulmonary tissues. In this section, we delve into various
deep learning strategies employed to enhance the detection and
analysis of COVID-19 and other pulmonary diseases through
CXRs.

A. COVID-19 Detection and Localization

A significant body of research has focused on leveraging
Deep Learning (DL) for the automatic diagnosis of COVID-



19 from CXR images. Despite achieving remarkable detection
accuracy, these studies often rely on limited datasets, compris-
ing only a few hundred COVID-19 samples. This limitation
raises concerns about the reliability and generalizability of the
resulting DL models. Moreover, many of these approaches
lack the capability to precisely localize the infection or grade
its severity, which is crucial for effective patient management
and treatment planning. One innovative study proposes a
systematic approach to address these challenges by creating
the largest benchmark dataset to date, featuring 33,920 CXR
images, including 11,956 COVID-19 samples. The study uti-
lizes advanced segmentation networks like U-Net and Feature
Pyramid Networks (FPN) for lung region segmentation and
COVID-19 localization, achieving unprecedented performance
metrics in both detection accuracy and infection quantification
[6]. Algahtani et al. [7] explored the potential of Deep Learn-
ing (DL) in addressing this diagnostic challenge by combining
1,504 CXR images from the Pediatric-CXR and COVID-19
chest X-ray datasets. The use of the Inception-V4 model,
applying transfer learning techniques, resulted in the accurate
identification of COVID-19 infections with an outstanding
overall accuracy of 99.63%. Another innovative approach
was presented in [8], where the authors developed a DL
model named CovMnet, specifically designed to differentiate
between normal and COVID-19 affected CXR images using
the Pediatric-CXR dataset. Through a series of experiments
aimed at refining model performance, including feature extrac-
tion and hyperparameter tuning, CovMnet achieved a notable
accuracy of 97.40%. Furthermore, research conducted in [9]
utilized the DenseNet-121 CNN model for the binary classi-
fication of COVID-19, leveraging a comprehensive dataset of
21,165 CXR images from various sources, including COVID-
19 radiography and Pediatric-CXR datasets. The application
of geometric data augmentation significantly enhanced the
model’s performance, culminating in a remarkable accuracy
of 97%. These studies highlight the critical role of DL models
in the rapid and accurate detection of COVID-19 through
CXR imaging, offering promising strategies for combating the
pandemic’s effects on public health.

B. Enhancing COVID-19 Detection through Image Enhance-
ment

The role of image enhancement techniques in improving
COVID-19 detection from CXRs has also been explored.
Recognizing the limitations posed by small datasets, one study
compiled a substantial dataset (COVQU) containing 18,479
CXR images. It investigated the impact of various image
enhancement methods, such as Histogram Equalization (HE)
and Gamma Correction, on detection efficacy. Notably, the
gamma correction technique showed superior performance,
highlighting the potential of image processing in enhancing
diagnostic accuracy, especially when applied to segmented
lung images [10].

C. Infection Map Generation for COVID-19

Generating accurate infection maps from CXR images
represents another avenue of research aimed at enhancing
COVID-19 diagnosis. Despite the utilization of deep networks
in previous studies, the accuracy of localizing actual infes-
tations remained suboptimal. Addressing this gap, a novel
method was introduced for joint localization, severity grading,
and detection of COVID-19, supported by the compilation of
a dataset comprising 119,316 CXR images. This approach sig-
nificantly outperformed traditional activation map techniques,
offering a reliable tool for clinical application [11].

D. Al Screening for Viral and COVID-19 Pneumonia

The potential of Artificial Intelligence (Al) in screening for
COVID-19 and viral pneumonia through CXRs has been a
subject of intensive investigation. One study highlighted the
utility of pre-trained deep CNNSs in distinguishing between
normal, viral, and COVID-19 pneumonia cases, using a diverse
database of CXR images. By applying transfer learning and
image augmentation techniques, the study achieved classifica-
tion accuracies upwards of 99.7%, underscoring the efficacy of
Al in rapidly and accurately detecting COVID-19 from CXRs
[12]. Khoiriyah and colleagues [13] evaluated the effective-
ness of a tailored Convolutional Neural Network (CNN) for
distinguishing between normal and pneumonia-affected CXRs
within the Pediatric-CXR dataset, comprising 5856 images.
By applying data augmentation techniques, they achieved a
notable accuracy of 83.38% in identifying pneumonia. Singh
et al. [14] introduced a CNN model enhanced with an attention
mechanism for the binary classification of CXRs into normal
or pneumonia categories. Utilizing the ResNet50 architec-
ture equipped with attention mechanisms and trained on the
Pediatric-CXR dataset [9], they reported a high accuracy of
95.73%, demonstrating the potential of attention-based models
in pneumonia detection. Another study [15] explored the
application of transfer learning on the RSNA-Pneumonia-
CXR dataset using two CNN architectures, ResNet-50 and
Inception-V4, for binary classification. The findings indicated
that the Inception-V4 model surpassed ResNet-50, with a vali-
dation accuracy of 94.00%, compared to ResNet-50’s 90.00%.
Although these studies successfully tackled pneumonia detec-
tion using binary classification frameworks, they were limited
by the binary nature of their approach, categorizing CXR im-
ages strictly into either normal or COVID-19 affected groups.
Recent research efforts, however, are shifting towards more
nuanced multi-class and multi-label classification techniques,
aiming for a more detailed analysis despite the relatively small
size of the datasets used when benchmarked against larger,
publicly available CXR datasets [16].

III. BACKGROUND

In this section we talk briefly about Radon transform as our
feature extraction method has been inspired from the same.



A. The Radon Transform

Radon transform, initially conceptualized for its application
in seismics, is often referred to as slant stacking [17]. We
explore the discrete version of the Radon transform and
examine its several characteristics. Its utility lies in focus-
ing on the extraction of straight lines from digital imagery.
The Radon transform is adept at extracting line parameters,
even amidst noisy conditions. The discrete Radon transform
performs a transformation from a complex global task in the
image domain to a simpler local peak identification challenge
in the parameter domain, thus facilitating the retrieval of
line parameters through methods like thresholding [18]. It’s
important to note that in scenarios characterized by noise,
conventional algorithms may falter. An alternative approach
involving local detection algorithms, such as edge detection
filters, followed by pixel linking and parameter estimation via
linear regression, often struggles with intersecting lines and
stabilizing in high noise environments. Unlike these methods,
the Radon transform exhibits resilience to these challenges
[19]. The Radon transform encapsulates the process of stack-
ing or integrating the values along inclined lines, determined
by specific line parameters, namely the slope (p) and offset.
This process, referred to as slant stacking or the p-transform
in seismics, leverages the integration of values along lines
to deduce the transform of a two-dimensional function into
a function within a two-dimensional (p, )-space, known as
Radon or parameter space.
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The Radon transform R(g)(p,7) of a two-dimensional func-
tion g(x,y), where integration is performed over the entire
plane, constrained along lines defined by the slope p and
intercept 7 through the use of the Dirac delta function §.

IV. PROPOSED APPROACH

This segment offers a summary of our approach, starting
with the choice of a suitable dataset, followed by an explana-
tion of the RadEx transform.

A. Dataset Selection

The COVID-QU-Ex Dataset, developed by Qatar University
researchers, comprises a comprehensive collection of 33,920
chest X-ray (CXR) images. This dataset includes:

e 11,956 images of COVID-19 cases,

e 11,263 images of Non-COVID infections (either Viral or
Bacterial Pneumonia), and

o 10,701 images categorized as Normal.

Accompanying the entire dataset are ground-truth lung seg-
mentation masks, marking the creation of the largest dataset
of its kind for lung mask data.

This study is pioneering in its application of both lung and
infection segmentation techniques for the detection, localiza-
tion, and quantification of COVID-19 from X-ray imagery. It

offers unprecedented support to healthcare professionals in as-
sessing the severity of COVID-19 pneumonia and monitoring
disease progression with enhanced accuracy.

Our research utilizes the COVID-QU-Ex dataset further
segmented into training, validation, and testing subsets:

1) Lung Segmentation Data: This includes the complete
COVID-QU-Ex dataset, encompassing all 33,920 CXR
images along with their respective ground-truth lung
masks.

We now look into the novel RadEx transform and under-
stand its process.

B. RadEx Transform

Our novel transformation technique involves a strategic
overlay of lines across an image, followed by aggregation of
pixel intensities along these lines into a distinct matrix. To
enhance the continuity and address the issue of sparsity within
this transformed space, we employ a variety of interpolation
methods, aiming to fill in intermediate values and create a
more cohesive representation.

Central to this method is a fundamental equation:
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Here, N represents the dimensionality of the image, with a
and b serving as adjustable parameters, and z indicating the
horizontal position within the image matrix.

However, direct application of this equation may result
in noticeable gaps within the final transformed image. To
counteract this, we employ an inverse function that calculates

the corresponding x values for given y coordinates, effectively
bridging these gaps:

et (o (55))

This ensures a more uniform and comprehensive coverage
across the image, enhancing the visual clarity and integrity of
the transformation.

Moreover, to accommodate the entire range of the image,
especially focusing on the upper half, we determine the
potential b values that satisfy when y extends from N/2 to
N, as delineated by:

1 y
b= 1
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Through this systematic approach, combining direct and
inverse equations along with strategic parameter selection,
our transformation method not only illuminates the intrinsic
patterns and intensities across the image but also pioneers a
comprehensive framework for image analysis and enhance-
ment.

We show below two cases where the image coverage
has been sparse and complete respectively. by changing the
parameters like a, b and we can generate different granularity
of image processing.
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Fig. 1. Image coverage with sparsity

Figure 1 highlights the case when there are gaps in compu-
tation and as a result some lines are missed. Figure 2 shows
the case where we increase the resolution and compute all
possible polynomials within the domain that can be drawn
and aggregate the pixel values on each curve.
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Fig. 2. Image coverage with sparsity

The output images on using the same technique can be seen
in the Figures 4 and 3.

Figure 3 shows the after effect of RadEx transform on an X-
Ray with covid infection. THe bottom half of the image is the
original X-ray and the top half is the result of our novel Radex
transform. Figure 4 shows the same effect but on a non Covid
infected X-ray image. We perform this transformation on all
the images in the dataset and perform transfer learning on three
Convolution Neural Networks - MobileNet [2], EfficientNet
[3] and ResNet [4]. We prepare two sets of data - one
comprising of the origianl images and the second consisting
of images as shown in Figures 3 and 4. We then train the three

Fig. 3. X-Ray with covid

Fig. 4. X-Ray with no covid

models for 20 epochs on the two sets of data and check the
performance on raw images as well as transformed images.

V. RESULTS AND DISCUSSIONS
TABLE I

COMPARISON OF MODEL PERFORMANCE ON RADEX AND RAW IMAGES
FOR THE LUNG SEGMENTATION DATA

Model RadEx Approach Raw Images
Precision Recall | F1 - | Precision Recall | F1 -

Score Score

resnet 34d 0.918 0.916 0.917 0.839 0.844 0.839

mobilenet 0.873 0.872 0.871 0.854 0.850 0.849

v2

efficientnet | 0.883 0.871 0.862 0.857 0.855 0.851

v2

Table I compares the performance of Resnet34d, Mobilenet
v2, and Efficientnet v2 models for lung segmentation using
RadEx (Radiomics-Enhanced) and raw image approaches.
With the RadEx approach, Resnet34d achieves the highest
precision, recall, and F1-score, followed closely by Efficient-
net v2. However, when using raw images, Efficientnet v2
outperforms the other models, showing the highest precision,
recall, and F1-score. Generally, all models perform better with
the RadEx approach compared to raw images, indicating the
efficacy of our novel feature engineering method.

A. Discussion

Time Complexity: Once the list of x and y co-ordinates
are identified it takes O(n**2) time to complete the feature
extraction process where n is the size of the square image. On



a system with 64 GB RAM and Intel(R) Xeon(R) CPU E5-
2620 v4 @ 2.10GHz with 16 processors, time taken to extract
features from a single 224X224 image was approximately
0.1 second. Consequently, processing the entire database of
33,920 images in the Lung Segmentation Data took a total
approximate time of 56 minutes.

VI. CONCLUSION

In this study, we introduced RadEx, an innovative feature
extraction technique designed for medical imaging data. Initial
findings demonstrate its potential, showing a notable improve-
ment in accuracy for models trained on combined image data
and extracted features compared to those trained solely on
images. Moving forward, we aim to expand our research by
increasing both the duration of training, through additional
epochs, and the diversity of data utilized.

Future investigations will explore the application of RadEx
to other types of medical imagery, such as retina scans and
fundus photographs, to assess its versatility and effectiveness
across various domains. Moreover, evaluating the impact of
RadEx in conjunction with vision transformers presents an
exciting avenue for further research, potentially broadening the
method’s applicability and enhancing its benefits in medical
imaging analysis.
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