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Urban activities, particularly vehicle traffic, are contributing significantly to environmental pollution 
with detrimental effects on public health. The ability to anticipate air quality in advance is critical for 
public authorities and the general public to plan and manage these activities, which ultimately help 
in minimizing the adverse impact on the environment and public health effectively. Thanks to recent 
advancements in Artificial Intelligence and sensor technology, forecasting air quality is possible 
through the consideration of various environmental factors. This paper presents our novel solution 
for air quality prediction and its correlation with different environmental factors and urban activities, 
such as traffic density. To this aim, we propose a multi-modal framework by integrating real-time 
data from different environmental sensors and traffic density extracted from Closed Circuit Television 
footage. The framework effectively addresses data inconsistencies arising from sensor and camera 
malfunctions within a streaming dataset. The dataset exhibits real-world complexities, including 
abrupt camera or station activations/deactivations, noise interference, and outliers. The proposed 
system tackles the challenge of predicting air quality at locations having no sensors or experiencing 
sensor failures by training a joint model on the data obtained from nearby stations/sensors using a 
Particle Swarm Optimization (PSO)-based merit fusion of the sensor data. The proposed methodology 
is evaluated using various variants of the LSTM model including Bi-directional LSTM, CNN-LSTM, and 
Convolutions LSTM (ConvLSTM) obtaining an improvement of 48%, 67%, and 173% for short-term, 
medium-term, and long-term periods, respectively, over the ARIMA model.

Since the first industrial revolution in the 18th century, the planet’s environment has experienced ongoing devas-
tation due to factory emissions and an increase in urban activities, such as vehicle traffic, mining, and farming. As 
a result, various pollutants are increasingly released into the environment. Air quality is one of the major concerns 
resulting from the deterioration of the environment and the release of pollutants. The air could be polluted by 
various contaminants, such as Particulate Matter (PM1.0), PM2.5, PM10, CO, NO2 , and SO2 , as determined by 
the US Environmental Protection Agency (EPA)1. Each of these pollutants is emitted into the environment due 
to several factors, such as traffic, industrial waste, and gaseous emissions from homes and factories. Additionally, 
NO2 from agricultural waste is also a significant contributor to air pollution.

Poor air quality has a direct impact on people’s health, resulting in various illnesses, such as lung diseases, 
asthma, cancer, and even fatalities2. According to the World Health Organization (WHO)3, around 99% of the 
global population breathes air exceeding WHO guideline limits and contains high levels of pollutants where 
the highest exposure is observed in low- and middle-income and developing countries. According to the UN 
Environment program4, the World Health Organization’s (WHO) air quality guidelines are necessary to avoid 
the impacts of bad air, which causes around 7 million premature deaths per year. Policies and efforts to reduce 
air pollution could significantly improve air quality leading to improved climate and public health that will 
ultimately reduce the burden on the economy of low and middle-income countries.

Real-time monitoring and forecasting of air quality are critical to remediation by keeping the authorities 
informed about the air quality to take necessary precautions and make informed decisions5. A system able to 
predict air pollution in the short, medium, and long term period and learn the correlation between urban activi-
ties and air pollution could greatly help in policy-making decisions. This correlation is critical as the deployment 
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of air pollutant sensors in all urban settlements is impractical. Moreover, data sources providing spatial and 
temporal correlations with air quality could create new opportunities in the domain.

Taking this into consideration, we utilized sensor data in conjunction with weather station data to develop 
an enhanced model capable of accurately predicting the air quality index (AQI) for short-, medium-, and long-
term periods. Additionally, we leveraged the extensive coverage of CCTV cameras installed at key locations 
throughout the urban area to analyze the correlation between traffic volume and air pollutants. Thus, the pro-
posed framework not only forecasts AQI but also identifies correlations between air quality and urban activities 
in cities and uncovers patterns.

The proposed methodology is multimodal and works with temporal and spatial data. For the temporal 
data, we apply Long Short Term Memory (LSTM) and its variants on real-time data on air pollutants. For the 
spatial data, we use the YOLO (You Only Look Once) v86 object detection model to count the vehicles in the 
CCTV images, which is then fed into the LSTM model along with the other sensor data for predicting AQI. 
The models are trained on real-time air pollutant data and CCTV traffic images including continuous readings 
from 10 atmospheric sensors, 3 weather stations, and 16 CCTV cameras installed in various locations in Dalat 
City, Vietnam7 as shown in Fig.  1. The dataset is better suited for the application as it covers most of the real-
time issues, such as sudden camera or sensor offline modes, noise from the surroundings, and outliers due to 
random reasons.

The AQI is predicted using both single and multiple sensors as input to the LSTM models. In the case of 
sensor fusion, the air quality of a certain region has been predicted using data collected from all the sensors as 
input to the model. This also allows forecasting the AQI for the regions where the sensors or weather station is 
temporarily offline. Since the sensors are placed at different locations, certain sensors will have more distance 
than the others from the region at which AQI is predicted. Thus, we can not treat all the sensors equally as the 
sensor closer to the target region may have more impact compared to the others due to similar kinds of weather 
and other environmental factors. Keeping this in consideration, we employed the Particle Swarm Optimization 
technique (PSO) to assign weights to the readings of each sensor in the average formula to make a single input 
window for the model.

The key contributions of the paper can be summarized as follows:

•	 We propose a PSO and LSTM-based multi-modal framework for accurate prediction of air quality in a region 
for short, medium, and long-term periods.

•	 A merit-based fusion of data is proposed to combine data from multiple sensors/stations, instead of relying 
on a single station data, to train a joint model able to accurately predict air quality at different regions. This 
scheme also allows the prediction of air quality in regions where the sensors are temporarily offline or do 
not exist.

•	 We also explore the correlation between air quality and urban activities that could lead to interesting applica-
tions in the future. More specifically we leverage the CCTV cameras installed at different locations in urban 
areas to analyze the correlation between traffic volume and air pollutants.

•	 We also evaluate several variants of LSTMs including Bi-directional LSTM, CNN LSTM, and ConvLSTM in 
the proposed framework, and compare them against two conventional time series analysis models, namely 
ARMA and ARIMA.

The rest of the paper is organized as follows. Section “Related Work” provides an overview of the related work. 
Section “Problem Statement and Motivation” specifies the problem and motivation behind pursuing this prob-
lem. Section “Methodology" describes the proposed methodology and the experimental setup. Section “Model 
Description” provides a comprehensive detail of the model/technique used. Section “Results” reports the con-
ducted experiments and the experimental results. Section “Summary and Lessons Learned” summarizes the 

Sensor Stations
CCTV Cameras

Figure 1.   10 Air pollutants sensors and 14 CCTV cameras installed in Dalat city, Vietnam7.
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work and discusses the lessons learned during this research. Finally, Section “Conclusion and Future Work” 
concludes the work.

Related work
The literature reports several interesting contributions toward air quality analysis. These contributions encompass 
a diverse array of methodologies employed for the prediction of air quality index. The framework classifying 
these varied approaches is visually depicted in Fig.  2 and is summarised in Table 1. The taxonomy is organized 
into three distinct sections, each predicated on the nature of the data employed as input for forecasting air qual-
ity. The initial section focuses on the utilization of solely sensor-derived data to predict air quality. The second 
section delves into the deployment of various types of imagery data for forecasting purposes. Finally, the third 
section pertains to the integration of both sensor-generated data and imagery to enhance the accuracy of air 
quality predictions.

Sensor’s data as an input
A vast majority of the existing literature relies on sensor data for air quality prediction. For instance, Fujita 
et al.8 employed sensor data including sensors for humidity and temperature along with timestamp and location 
information, and public weather data for training ML models to predict air quality. They also used a stacking 
approach by employing three models at the first level and their outputs are then fed as inputs into other regres-
sors at the second level. Prediciton vectors generated during training are subsequently utilized in conjunction 
with the test data to inform the final prediction, potentially introducing bias into the system. Liu et al.9 also 
relied on sensor data for analyzing Beijing’s AQI from 2019 to 2021. Two different models namely ARIMA and 
Neural Networks (NNs) are trained on the sensor data where better results are obtained with NNs compared to 
ARIMA. The authors recommended the suitability of sensor data for the task and concluded that the ARIMA 
model lags the ability to handle complex, non-linear relationships, extract relevant features, model temporal 
dependencies, and adapt to changing conditions making it a more unsuitable choice for forecasting AQI. Du 
et al.10 introduced the Deep Air Quality Forecasting Framework (DAQFF), which is a hybrid deep learning 
approach that effectively addresses the challenges of predicting urban air quality, encompassing variables like 
PM2.5, wind speed, and temperature. The key components of the model include one-dimensional Convolutional 
Neural Networks (1D-CNNs) for local trend and spatial correlation extraction and Bi-directional LSTM for learn-
ing spatial-temporal dependencies. Despite demonstrating strong predictive performance and generalization 
capabilities, the study’s limitations include an absence of in-depth analysis regarding computational demands 
and the real-time feasibility of DAQFF implementation.

In11, historical data on air quality and meteorological conditions are utilized for forecasting future air quality 
levels. The proposed approach employs a Deep spatial-temporal Ensemble (STE) model, which consists of three 
components. Firstly, an Ensemble learning method is employed to train different models for distinct weather 
patterns, as each weather pattern exhibits unique spatial-temporal characteristics in relation to air quality. Sec-
ondly, spatial correlation is investigated using the Granger Causality method12. Lastly, a temporal predictor is 
designed to capture short-term and long-term dependencies of air quality, utilizing deep LSTM (Long Short 
Term Memory) networks. These solutions are only based on sensor data. In the study, distinct sub-models are 
employed to discern spatial correlations among specific stations and areas, as opposed to our single, universal 
model that identifies correlations across all stations and areas where CCTV cameras have been deployed. One 
of the existing works13 evaluates four distinct deep learning approaches including RNN, LSTM, GRU, and the 

Figure 2.   Taxonomy of different models used in AQI prediction based on sensor’s data (left), Image data 
(middle), and Multimodal data (right).
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attention-based Transformer model, along with a baseline method on sensor data. To this aim, the Beijing Air 
Quality Dataset is employed for experimentation, comprising multivariate hourly time series data spanning five 
years. The findings in this research demonstrate the superior predictive capabilities of the Transformer model 
when forecasting up to 4 hours ahead. Subsequently, from the 4th to the 16th hour, the performance of LSTM 
aligns closely with that of the Transformer model. This trend underscores the Transformer’s proficiency in pre-
dicting early hours, particularly within the 4 to 5-hour range. While Transformers have exhibited promise in 
numerous Natural Language Processing (NLP) applications, they encounter substantial difficulties when applied 
to long sequence time-series forecasting14. These challenges arise from their quadratic computational complex-
ity in self-attention, memory limitations when stacking layers for extended inputs, and a decrease in inference 
speed when generating lengthy outputs, collectively impeding their efficiency in handling prolonged sequences. 
Notably, our study extends beyond this time frame, encompassing predictions for more distant futures such as 
5 days and 10 days ahead. Zhang et al.15, present a lightweight approach for PM2.5 prediction utilizing a novel 
model called Sparse Attention-based Transformer Networks (STN) for both single-step and multi-step forecasting 
scenarios. The study emphasizes the necessity of addressing sudden fluctuations in air pollution data to enhance 
forecasting accuracy, crucial for environmental protection and public health. In the study, the future forecasting 
spans 48 hours, whereas our study extends predictions to 192 hours ahead. Although the results from STN model 
align with our outcomes, it’s essential to mention that the STN model exhibits higher complexity compared to 
our simpler LSTM variants, emphasizing the simplicity and ease of implementation in our proposed approach.

Images as an input
The literature also reports the use of image data for air quality prediction. For instance16, introduces AQC-Net, a 
deep learning-based model for air quality estimation from scene images. A self-supervision module called Spa-
tial and Context Attention (SCA) block enhances feature representation by capturing interdependence between 
channel maps. Experimental results on the NWNU-AQI (a high-quality multi-scenario air quality) dataset16 
demonstrate superior air quality classification accuracy compared to SVM and ResNet methods, addressing the 

Table 1.   Short description and limitations of the research work done in the field of Urban Air Quality 
prediction and correlation with Urban nature activities.

Input data type Reference Year Short description Limitations

Sensor’s data

8 2021 Stacking approach of different ML models has been used for 
predicting air quality

Prediction vectors generated during training are used with test data 
for final prediction thereby, introducing bias into the system

9 2022 ARIMA and Neural networks are trained and results are compared Models applied lags the ability to handle complex, non-linear 
relationships and adapt to changing conditions

10 2019 Hybrid DL approach used to predict Urban air quality using 
1D-CNNs and Bi-directional LSTM

Absence of in-depth analysis regarding computational demands and 
the real-time feasibility of the model

11 2018
Deep spatial-temporal Ensemble (STE) model used for extracting 
distinct weather patterns, spatial correlation and short-term and 
long-term dependencies of air quality

Distinct models used for extracting spatial and temporal dependen-
cies for different stations compared to our single model across all 
the stations

13 2022
Four distinct DL approaches i.e. RNN, LSTM, GRU, and Trans-
former model used for forecasting air quality. Every 4-hour window 
is being forecasted for the next 48 hours

Results showed that from the 4th to 16th hour of forecasting, the 
performance of LSTM aligns with the Transformer model. Our 
work also shows results for the next 5 days and 10 days forecasting

15 2023
The study stresses the importance of addressing air pollution fluc-
tuations for accurate PM2.5 forecasts using a lightweight method, 
STN, in single-step and multi-step scenarios

The range of future prediction is 48-hours as compared to ours 192-
hours. Also STN model is more complex than our simpler LSTM 
variants, underlining the ease of implementation in our approach

Images Data

16 2020 A self-supervision module called Spatial and Context Attention 
(SCA) block feature representation between channel maps.

The dataset used in this paper is limited to only day time focusing 
more on sky-dominated scenes

17 2021
Set of patterns using transfer learning, fuzzy negation, and periodic 
frequent pattern mining establishing a correlation between urban 
nature, traffic, and air pollution

The data acquired in this paper represents collective average values 
encompassing all regions of the city as compared to our weighted 
averaging approach for data of different regions

18 2022
Double Output Vision Transformer (DOViT) structure is used for 
automatic feature extraction from the images for prediction of air 
quality

Data mostly comprises of sky images, buildings and scenic images 
as compared to our CCTV traffic images captured in real-time

Multimodal Data

19 2021
Mobile images used with certain hypothesis regarding correlation 
of air quality with urban nature. LSTM-NN model has been used 
for prediction

The image dataset used does not consider traffic impact on air 
quality, instead, it is based on the general environment i.e. scenic 
images to predict

17 2021
Semantic Segmentation is used to segment urban nature segments 
from images like buildings, sidewalks, and minibikes. The ratio of 
each category is used along with the air quality levels to predict

Mobile images are used instead of CCTV images provided by the 
authorities. Only 100 images are used in one iteration to calculate 
precision. Smaller data does not cover all the scenarios of the 
urban nature. Moreover, the accuracy is lower as compared to our 
achieved accuracy

20 2019 Numerical data plus visual data (Environmental pictures) are fed 
into a system of CNNs and MLP to predict air quality index

Accuracy was found to be low. Also, forecasting of air pollutant 
values are not done instead, the system is trained to predict AQI 
level directly which means the previous calculation towards the AQI 
levels has been done manually

21 2022 Satellite images along with the sensors data are used to enhance the 
accuracy for assessing air quality This study is limited only to satellite images

22 2023
A deep learning model utilizing an encoder-decoder architecture 
and real-time monitoring data. This model predicts PM2.5 concen-
tration and evaluates the impact of urban traffic on air quality

Their prediction timeframe was limited to 48 hours, which is sig-
nificantly shorter than our extended prediction range of 192 hours.
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critical need for effective air quality monitoring. In this work, the utilization of exclusively daytime images, pre-
dominantly comprising sky-dominated scenes, imposes certain limitations on the applicability of this research. 
Furthermore, it is important to note that this work falls short of achieving the same level of monitoring accuracy 
as traditional air quality monitoring stations. In17, PM2.5 is predicted for a short and medium-term period 
through images captured by smartphones and cameras. A set of patterns is established by leveraging the correla-
tion between urban nature, traffic, and air pollution using data collected from two different countries through 
transfer learning, fuzzy negation, and periodic frequent pattern mining. The authors assert that their proposed 
methodology has the potential to facilitate the development of sustainable smart cities that prioritize the demands 
of urban traffic, urban management, and citizen health. The data collection process in this research involved affix-
ing personal devices onto motorcycles and operating them along predetermined routes for extended periods. As 
a result, the data acquired represents collective average values encompassing all regions of the city in contrast to 
our study, which employs a weighted averaging approach for the data. The work also exhibits the limitation of not 
addressing area-specific predictions within the city. Wang et al.18 also utilized mobile devices to capture images 
and employed a Double Output Vision Transformer (DOViT) structure with a multi-head self-attention (MSA) 
mechanism for automatic feature extraction from the images for the task. In contrast to the existing methods, in 
this work, we utilize the existing CCTV traffic images captured in real-time for determining the traffic intensity 
by detecting vehicles and extracting the vehicle count from the images. The vehicle count feature is then provided 
to the proposed model for forecasting the AQI for short-term, medium-term, and long-term periods.

Multimodal input
The literature also reports several works utilizing both sensor data and images for air quality prediction. For 
instance19, provided both sensor data and images as input to an LSTM-based model for predicting air quality. 
The authors reported better results for the fusion of images and real-time open PM2.5 measurements. The 
research work in17 also utilized images and sensor data for exploring the correlated features of urban nature, 
transportation, and environment. The study in20 generated AQI rankings/categories using numerical data col-
lected from different sensors and visual data (Environmental pictures). Subsequently, the same AQI values and 
visual features extracted through Convolutional Neural Networks (CNNs) were fed into a multi-level perception 
(MLP) model to predict AQI levels in a region. The experiments were conducted on data logs obtained from five 
distinct routes in Tokyo, Japan. However, the accuracy of the results was found to be low, and no forecasting of 
air pollutant values was performed. Li et al.21, on the other hand, integrated three different types of information 
for the generation of full coverage Aerosol Optical Depth (AOD) maps to enhance the overall data accuracy for 
assessing air quality and pollutant concentrations in China. The data sources include satellite AOD data, daytime 
AOD snapshots, and other sensor data. The method used here is an “integrated data fusion approach”. Instead of 
using observational data solely as learning targets, the proposed method fuses multimodal AODs derived from 
multiple data sources. The study is limited to satellite imagery. Dao et al.19, employed open datasets containing 
multimodal data including air pollution, weather, and image data, which are used for training ML models for 
air quality prediction. The authors proposed a method for predicting AQI at a local and individual scale using a 
few images captured from smartphones and open AQI and weather datasets, leveraging lifelog data and urban 
nature similarity. Moreover, a Conditional Long Short-Term Memory Neural Network (LSTM-NN) model has 
been used for the prediction. The experimental results revealed that using only PM2.5 values as an input to the 
model for prediction yielded poor results while using solely images to forecast PM2.5 levels led to satisfactory 
results. Historical images captured within the same geographical context, such as a specific route or location, 
along with the extraction of high-semantic features from these images, have the capability to serve as predictive 
indicators for PM2.5 concentrations.

The literature shows several emerging challenges in understanding the mutual impact of air pollution and 
urban life through monitoring systems consisting of sensor data and CCTV images. The availability of data for 
research is highlighted as a significant barrier for researchers7. Existing datasets used by researchers are often 
limited in size and spatiotemporal dimensions. They may also lack realistic conditions, such as missing, noisy, or 
outlier data. This work is based on real-time data, provided in a benchmark competition7, reflecting real-world 
conditions and issues, such as sudden camera or station malfunctions, noise in the data, and outliers. The model 
trained on data collected from multiple stations in an optimized way not only improves the performance of the 
framework but also allows the prediction of air quality in regions where the sensors are temporarily offline or 
do not exist. Moreover, the vehicle count feature extracted from the provided CCTV imagery further enhances 
the predictive efficacy of our model. In the cited paper22, researchers proposed a deep learning model named 
iDeepAir employing an encoder-decoder architecture and real-time monitoring data to predict PM2.5 concen-
tration and assess the influence of urban traffic on air quality. However, their prediction timeframe was limited 
to 48 hours, significantly shorter than our extended prediction range.

Problem statement and motivation
This work aims to address some of the key limitations of the existing works, especially the data used for the 
prediction. The prior work mostly relied on datasets either collected from offline sources or generated within 
laboratory settings, which do not fully capture the complexities of real-world scenarios. To overcome these 
drawbacks, we leverage real-time data that is continually obtained from sensors installed in different regions of 
the city. Typically, weather stations and air pollutant sensors are strategically positioned within urban areas to 
monitor pollution levels. These sensors allow us to forecast air quality for different regions in the cities. However, 
in such infrastructure, sensor failures may occur, resulting in the inability to calculate air quality for a particular 
region. To this aim, we train a single model on data obtained from the nearby stations/sensors to further enhance 
the capabilities of the proposed solution. This approach allows the prediction of air quality in areas where sensors 
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are either absent or malfunctioning during a specific time interval. Moreover, keeping in view the impact of 
urban activities (e.g., vehicle traffic) on the environment, we also explore the potential correlation between urban 
activities and air quality by incorporating the CCTV images into the model.

Notably, our study explores two key aspects. Firstly, we incorporated vehicle count as a feature extracted 
from CCTV images, thereby enhancing the predictive capabilities of our model and exploring the correlation 
between urban activities and air quality. Secondly, we implemented a merit-based sensor fusion scheme, enabling 
simultaneous training of the model using both vehicle count from CCTV images and air pollutant data from 
multiple sensors installed at different locations.

Methodology
An overview of the proposed methodology is provided by Fig.  3, which can be roughly divided into six phases 
comprising Data Collection (Phase 1); Data Pre-Processing (Phase 2); Sensor Fusion (Phase 3); training the Deep 
Learning Model (Phase 4); Prediction (Phase 5); and AQI calculation (Phase 6).

•	 In the first phase, multi-modal real-time data (including CCTV camera imagery and air pollution data) from 
the different regions of Dalat City, Vietnam is collected. The data sources include 10 sensors for air/atmos-
pheric pollutants (PM1.0, PM2.5, PM10, SO2 , NO2 , CO, O3)7; 3 meteorological stations providing weather 
data (Temperature, Humidity, Rainfall, UV)7 both having a refresh rate of 5 minutes which caters for any 
change in the wind speed, pressure and dew point; and 16 CCTV cameras for traffic images7 which records 
one frame every 5 seconds. There are two key challenges associated with this data collection process: (1) the 
data’s inconsistency resulting from occasional sensor or camera failures in real-time, with data collection 
resuming after maintenance by the authorities, and (2) the limited nature of the data, as our analysis relies 
on just 5 months’ worth of data with some missing values.

•	 In the second phase, we employed some pre-processing techniques to clean the data, extract features from 
the data, prepare the data to feed it into the model and deal with the missing values.

•	 In the third phase, we arrange three types of input data based on our objectives. Firstly, we arrange a single 
sensor’s data for training the model to build our base model. Secondly, we do sensor fusion and combine 
the input data for all the sensors and feed it into the model for training. In this case, we want the model to 
predict any specified region based on the combined input of all the sensors. The third scenario deals with 
the model being trained on both the sensor’s data and the vehicle count obtained from the CCTV camera 
images. Here our model takes the CCTV images as input and predicts the PM2.5 levels. In this case, we make 
some interesting insights from the correlation between urban traffic and urban air quality.

•	 In the fourth phase, the input data, based on the aforementioned three cases, is fed into the Deep Learning 
Model for training purposes. In our study, we used LSTM and its variants as our models for forecasting air 
quality. LSTM is chosen based on its proven performance in similar applications23,24.

•	 In the fifth phase, the model predicts short-term, i.e. the next day in the future, medium-term, i.e. the fifth 
day in the future, and long-term periods, i.e. the 10th day in the future.

•	 In the sixth phase, AQI is computed based on the model’s predictions of PM2.5 levels according to the US 
EPA1 standards.

In this work, our objectives are twofold: AQI Prediction and Pollution-Traffic Correlation Discovery. An overview 
of these objectives is provided below.

•	 Objective 1 (AQI Prediction): Firstly, we aim to predict future values of pollutants and forecast AQI for a given 
area based on the data collected from the sensor/sensors installed in that area. Let’s suppose D is the current 
day. So, we predict the values of air pollutants and forecast AQI for D+1st day, i.e., the next day (short-term 
period). Similarly, the same process is repeated for the D+5th day (medium-term period) and D+10th day 
(long-term period). We also make use of data fusion at the input taken from multiple sensors installed at 
different stations to predict air quality for a target station, for the next day, i.e., for D+1st day.

•	 Objective 2 (Pollution-Traffic Correlation Discovery): Secondly, we intend to develop a model that incorpo-
rates both the sensors’ data and CCTV images to establish a correlation between air pollution and traffic in 
the city. This will enable the model to predict pollutant values when given the vehicle count obtained from 
the CCTV images of the traffic as an input. In this task, we will predict the air quality for the same D+1st, 
D+5th and D+10th day.

All these objectives bring some variations in the pre-processing, data preparation, and fusion processes. Thus to 
make it more readable, this section is divided into two subsections each describing the methodology/processes 
for each experiment conducted in this work.

Objective 1 (AQI prediction)
In this section, we will address two distinct scenarios. In the first case, we aim to forecast the AQI for a particular 
region by relying solely on the sensor deployed within that specific region. In the second case, we delve into the 
application of fusion techniques, synthesizing a unified input derived from all the sensors distributed across the 
city. With this consolidated data, we proceed to predict the AQI for any specific area, even in cases where a dedi-
cated sensor may not be present. We provide a comprehensive and separate explanation of each scenario below.
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Figure 3.   Flow Chart depicting all the major blocks of our experimental setup. Data Collection: from sensors 
to CCTV images7, Data Pre-Processing and cleaning, Data Fusion (exclusively for sensor’s data), Our Proposed 
Deep Learning Model, Prediction Results for Short, Medium, and Long-term Periods, and AQI Calculation.
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AQI Prediction using the Station Data only
In this experiment/task, we want to predict air quality using station data (i.e., the sensors installed in the same 
area) only. To complete the task, we outline the operational procedures for one of the stations, which can be 
replicated for the other stations. To this aim, we have chosen station/sensor 3 due to two factors. Firstly, it is one 
of the sensors connected to the weather stations. Secondly, it contains more recorded values compared to the 
other sensors and therefore has fewer instances of missing data. For AQI calculation, each pollutant value is used 
separately and the one which gives the largest value of AQI is considered the one responsible for higher AQI1. 
Here, we will consider PM2.5 values and the same can be extended to other air pollutants. One justification for 
selecting PM2.5 air pollutants pertains to the air quality categorization and public notifications based on both 
AQI and PM2.5 concentration levels.

We collected data for sensor 3 which is connected to one of the weather stations for a period of 5 months, 
from June 15, 2022, to November 14, 2022, resulting in a total of 29,047 samples. To use this data as input for 
our LSTM model, we performed some pre-processing operations on the PM2.5 samples. These operations can 
be extended to other pollutant samples to determine the contribution of each pollutant to the AQI. The initial 
input matrix size is 29047x1. However, after pre-processing, which involves averaging every 5-minute sample 
over an hour to obtain an hourly sample, the size of the input matrix changes to 153x24. In this new matrix, each 
row represents the number of days while each column represents every hour of the day.

The data is arranged in a sequence based on the key variables’ hour count, day count, and lookahead, which 
will be used as input to our LSTM model. For instance, we took hour count = 3, day count = 4, and lookahead 
= 1, the model will predict the PM2.5 values for the next day at the same hours as the input hours, where the 
input hours will be from the previous 4 consecutive days. It is then transformed (reshaped) into a 3-dimensional 
matrix for the input of the LSTM model. The data is then split into training data (19 weeks) and test data (3 
weeks). Due to some errors/faults in the sensor data, there are missing values, which are replaced by the mean 
data of the corresponding column (corresponding hour) of the training data. Both the training and test data are 
normalized using Eq. (1) to make it in the range of [0, 1], before training the model because the PM2.5 value 
range for different sensors are different (minimum recorded value for PM2.5 is 0 and maximum recorded value is 
1688). Data normalization ensures equitable treatment of all features, thereby enhancing the efficiency, stability, 
and effectiveness of the training process. Consequently, this practice contributes to the improvement of model 
performance and its ability to generalize effectively to unseen data.

AQI Prediction using Multiple Stations Data via a Merit‑based Fusion Scheme
In this task, we aim to utilize multiple stations’ data for air quality prediction in a particular region by combining 
the sensor data in a merit-based fusion. The main motivation for the task comes from the fact that air pollutant 
sensors can not be installed everywhere in the city. Also, the sensors can get faulty due to random reasons. Our 
objective is to find the air quality of those regions using the sensors installed and working in the nearby regions. 
To this aim, we performed sensor fusion by taking six sensors’ weighted averages as an input for our model and 
obtained results for all the individual sensors taken as an output. Using Haversine Formula 2, we discarded the 
data from sensor 2, sensor 4, sensor 5, and sensor 8 as the distances calculated for these sensors gave erroneous 
and illogical values. In the equation, ϕ is latitude, � is longitude, R is earth’s radius (mean radius = 6371 km) and 
the angle must be in radians to use it in the trigonometric function.

We used sensor 1, sensor 3, sensor 6, sensor 7, sensor 9, and sensor 10 in the fusion and took the same sensors 
as an output one by one to predict the air quality in the regions where these sensors are installed.

For this task, we used the same input window as we used in the case of AQI prediction for station data only. 
The only difference is the weighted average values in the input window for the fusion. First, we arranged all the 
data of all six sensors for the same dates and time in order to get their average values. We can not directly aver-
age all the values because each sensor may contribute differently and we need to know which of the sensors is 
contributing more to the combined sensor data. For this purpose, we initially calculated the distances of all the 
input sensors/stations from the output sensor/station and took the ratio of these distances as the weights for 
the weighted average. However, this is not an optimal solution, thus, to obtain near-optimal values/weights, we 
employed an optimization method namely Particle Swarm Optimization (PSO) for the merit-based weights to 
be used in the Weighted Average Formula 3. These weights result in the minimum error between the average 
value obtained and the real value of the output sensor.

In the above equation, W  shows the weighted average after fusion of the sensors, ωi , represents the weights 
updated by PSO, and Si , represents the respective sensors for which the weights are being updated, where, 
i = 3, 7, 10, 6, 1, 9 . Once the input matrix of weighted average values is obtained, the same process used in the 

(1)Xs = (X − Xmin)/(Xmax − Xmin)

(2)

a = sin
2

(

�ϕ

2

)

+ cosϕ1 · cosϕ2 · sin2
(

��

2

)

c = 2 · arctan 2
(√

a,
√

(1− a)
)

d = R · c

(3)
W = ω3.S3 + ω7.S7 + ω10.S10

+ω1.S1 + ω6.S6 + ω9.S9
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case of AQI prediction for station data only is repeated to predict the PM2.5 values for the next (D+1st) day 
(short period).

Particle swarm optimization
Particle Swarm Optimization (PSO) is a powerful optimization technique inspired by the collective behavior of 
bird flocking or fish schooling and has been already proven very effective in fusion25. In PSO, a group of particles 
(representing potential solutions) traverse the search space, iteratively adjusting their positions based on their 
own experience and the experience of their neighbors. Each particle is influenced by its personal best solution 
found and the best solution discovered by its neighbors. This cooperative behavior enables PSO to efficiently 
explore the solution space and converge towards promising optima.

In our case, the number of particles is 6, and the upper bound is set to 1 and a lower value is approximately 
equal to zero, ensuring the weights in the range of 0 to 1. Our goal is to tune/optimize the weights for the Eq. 
(3) with the aim of aligning the resulting data matrix with the data matrix of the sensor, which is considered the 
output to be predicted. For instance, if we want to predict the air quality at station 3 (i.e., the region where sensor 
3 is installed) while having a combined input of all the sensors then our target value in the objective function of 
the PSO algorithm will be based on the sensor 3 data matrix.

Objective 2 (periodic traffic‑pollution patterns discovery)
In this objective, our aim is to investigate the correlation between human activities and AQI. Additionally, we 
seek to explore the potential of utilizing CCTV cameras as an alternative approach to forecast AQI. We intend 
to establish a relationship between CCTV camera images and sensor data by incorporating CCTV traffic images 
as inputs to our model for AQI prediction. In this specific case, we used sensor 3 as the test case and camera 9, 
as camera 9 is the CCTV traffic camera closest to sensor 3, as shown in Fig. 1. Figure 1 shows the location of 10 
air pollutant sensors and 14 cameras installed in the region.

In this task, our method also involves counting/identifying the number of vehicles in the CCTV images and 
using it as one of the features to find the correlation between traffic density and air quality. Camera 9, which is the 
closest to sensor 3, is selected to obtain CCTV traffic images during the same period as sensor 3 data (June 15, 
2022 - November 14, 2022). However, we observed that some images were missing in July and in other months, 
resulting in a total of 22641 images. The images are available in two formats including colored images and gray‑
scale images. Colored images cover daytime and evening time while grayscale images cover nighttime. To process 
the images, we needed a model that could tackle both types of images without compromising the results of the 
object detection algorithm. It is worth mentioning here that the images collected from the CCTV cameras record 
frames every 5 seconds and range from June to November. This dataset caters to all kinds of weather conditions 
i.e. Rainy and sunny weather conditions. We trained our model on this dataset having different types of weather 
conditions which makes our system more robust.

Initially, we employed YOLOv527, which failed to produce accurate results in terms of vehicle detection in 
both types of images. We then used the latest YOLOv8 model, which is a larger model with a higher number of 
parameters. The model is available in different configurations. We tried different versions of the model including 
the YOLOv8n, which is the simplest among the version 8 models having 3.2 million parameters and 8.7 billion 
FLOPs. However, the results were not very accurate. Finally, we used YOLOv8x weights with the COCO dataset26 
to detect objects, such as cars, motorbikes, and buses in the images, the details are provided in Table 2. YOLOv8x 
has 68.2 million parameters and 257.8 billion FLOPs. The model produced much better results.

Figure 4 shows some sample CCTV images and the corresponding output images with vehicles being detected 
by the model. The figure includes the images captured in the daytime, evening time, and nighttime (in the top 
row). The bottom row shows the output after the model detects the required objects in these images. In Table 2 
it can be observed that more than 80 percent of the vehicles are MotorBikes.

In our first objective (i.e., AQI prediction), the input matrix for the model has one feature (i.e., air pollutant 
values) while in this case the model is trained on two types of features including the air pollutant values and the 
number of vehicles in the images. The same pre-processing steps used in the tasks of AQI prediction are also 
applied here after getting the total count of the vehicles from all 22641 images. The input matrix size changed 
from 22641x1 to 145x24 where 145 shows the number of days and 24 shows the number of hours. Here the total 
count of vehicles for every hour of every day has been calculated. All the image data is arranged according to 
the same sequence as the air pollutants data using the timestamp. The model is trained on both the air pollut-
ants data and the vehicle count obtained from the CCTV images data where the latter data is used as an input to 
the model while the former data is taken as an output using the same key variables (hour count, day count and 
lookahead) of the generic model used in the tasks of AQI prediction.

Model description
Figure 5 provides an overview of the proposed model. Three main variables are defined in the model including 
hour count, day count, and lookahead. The hour count variable represents the number of hours as an input, which 
ranges from 1 to 24. The day count variable determines the number of days in the input while lookahead variable 
allows the model to predict the desired day in the future. Each window in the model is determined by the values 
assigned to variables hour count and day count. Figure 5 illustrates the movement of the window across the entire 
data matrix, serving as an input to the LSTM model.

The general form of an element in the input window is hdij , where h is the hourly value of the air pollutant (in 
this case PM2.5) determined by i, and j, d is the day number and i & j represents the starting time and end time of 
the hour, respectively. The input window for the case of hour count = 3, day count = 4 and lookahead = 1, will be:
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Day Time Evening Time Night Time

Figure 4.   YOLOv8x weights used with the COCO dataset26 to detect cars, motorbikes, and buses (labels used 
from the COCO dataset) in the CCTV images7. Vehicle count from this detection is used for the discovery of 
Periodic traffic pollution patterns.

Table 2.   Total vehicle count extracted from CCTV traffic images (June 15 - Nov 14, 2022).

Total vehicle count for 
camera 9

Cars 24232

Motorbikes 107153

Buses 1648

Total 133033
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Figure 5.   General Description of a Data Matrix sequencing. Frames are generated in sequential order for Input 
to our LSTM model through a windowing process shown by the red arrow line. Variable hour count covers 24 
hours, day count can be any no. of days as input, and Lookahead can be any day in the future. Output sequence 
is generated by the LSTM layers for the desired future period.
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Our objective is to forecast the air pollutant values for the next day which is represented as D+1st day, where D 
is the current day, D+5 is the 5th day and D+10 is the 10th day. The output window sequence for D+1st day is:

for D+5th day is:

and for D+10th day is:

In the next iteration, the input window will add the next column of the hours according to the same hour count 
for the same days and the first column of the initial input window will be removed from the input window as 
shown below:

and the output window will also take the form for D+1st day:

for D+5th day:

and for D+10th day:

Once all the hourly values for the same days are traversed in the input sequences the window will shift to the 
next row and the first row will be removed from the input window. The input window after 22 iterations for 
predicting D+1st day will be:

and the output sequence for D+1st day will be:

The same type of sequences can be made for the D+5th day and D+10th day.
These input sequences are fed into the proposed model and the required output is recorded. The model con-

sists of three connected layers of LSTM blocks (known as stacked LSTM) with ’relu’ as the activation function 
(it helps address the vanishing gradient problem and can accelerate convergence during training). The first layer 
consists of 100 LSTM blocks while the second and the 3 rd layers consist of 64 and 50 LSTM blocks, respectively. 
The LSTM block comprises four essential elements: an input gate, a forget gate, an output gate, and a cell state.

The input gate determines the information to be incorporated into the cell state as per Eq. (4), while the forget 
gate determines the amount of information to be discarded according to the Eq. 5.

The output gate regulates the transfer of information to subsequent time steps or the output and is calculated as 
Eq. 6. The cell state is the result of combining the previous internal memory state and the forget gate, as well as 
the element-wise multiplication of the self-recurrent state and the input gate.
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where ht is the hidden state of the LSTM block. Wi , Wf  , and Wo are weight matrices associated with the input gate, 
forget gate, and output gate respectively. ReLU is the function when it receives any negative input, it transforms 
that input to zero “0”, while it keeps the positive value x as it is. This function ranges from 0 to infinity:

The input window sequence and the output window sequence for Objective 2 during the training and testing 
process have taken the following form:

Let vcdij represent the vehicle count (where v shows the vehicle count value for a certain hour determined 
by i and j) and let hdij represent the hourly value of the air pollutant (PM2.5), for a specific hour (determined by 
the value i and j ) and for a certain day d. The input window for the case of hour count = 3, day count = 4 and 
lookahead = 1, will be:

Our objective is to forecast the air pollutant values for the short period which is represented as D+1st day, where 
D is the current day, the medium period represented as D+5th day and long period represented as D+10th day. 
So, the model is trained for the output window sequence as follows:

for D+1st day:

for D+5th day:

and for D+10th day:

Similarly, as described for Objective 1, the next iterations will take the same form. The only difference is the use 
of the vehicle count data as an input window sequence while for the output window sequence, the air pollutant 
data matrix is used.

Results
In this section, we provide the results of all the experiments conducted in this work to achieve our objectives. 
Our proposed model comprises three interconnected layers of LSTM blocks, organized in a stacked LSTM con-
figuration, employing the ’relu’ activation function. Specifically, the initial layer incorporated 100 LSTM blocks, 
while the subsequent two layers comprised 64 and 50 LSTM blocks, respectively. The run-time of our model for 
training 19 weeks (about 4 and a half months) of data over 100 epochs took 16.81 seconds, while, validation of the 
test data (03 weeks data) took only 0.21 seconds. All computations have been performed on a standard desktop 
system of model XPS 8950 with 32 GB of RAM and an Inter i9-12900K (24 CPUs) processor running at 3.2 GHz.

The proposed solutions are evaluated in terms of Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), Mean Square Error (MSE), and Mean Relative Error (MRE) which are the most commonly used error 
metrics for evaluating the regression models. These metrics are defined in Eqs.  11, 12, 13, and 14, respectively. 
In the equations, x̂i represents the predicted value, xi represents the actual value recorded by the sensors, and n 
is the number of samples in the dataset.

(7)ct =ft ⊙ ct−1 + it ⊙∼ct

(8)∼ct =ReLU(Wc .[ht−1, xt ] + bc)

(9)ht =ot ⊙ ReLU(ct)

(10)f (x) = max(0, x)
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Objective 1 (AQI prediction)
AQI prediction using station data only
After the required pre-processing steps the sequenced input is fed into the model, which provides the required 
predictions. During the experiments, we observed that the predicted values are converging towards the pattern 
of the actual graph for all prediction periods (i.e., D+1st day, D+5th day, and D+10th) as shown in Fig. 6. Fig-
ure 6 provides the comparison of prediction graphs at station 3 for the next day (i.e., D+1st day), D+5th day, and 
D+10th day. However, as can be observed in the figure, the actual graph has a major portion as a straight line 
framed in red dotted lines, which is mainly due to the missing values replaced by the mean values.

Table 3 provides the results of the first objective showing the RMSE, MAE, MSE, and MRE values for D+1st, 
D+5th, and D+10th day at all stations. We note that each station is represented by the corresponding sensor. 
For example, sensor 1 represents station 1. Variations in the results of different sensors are due to different data 
records for every sensor, variations in data length, and different no. of missing values. As can be seen, overall 
better results are obtained in terms of RMSE, MAE, MSE, and MRE at all the stations. Overall, the lowest RMSE, 
MAE, and MSE values for D+1st, D+5th, and D+10th day are obtained at station/sensor 5.

Reflections on AQI prediction using station data only
In this study, we examined the forecasting of PM2.5 values for the short, medium, and long-term period, using 
a fixed hour count of 3 and day count of 4 while changing the lookahead variable from 1 to 5 and 10, respectively. 
Our results demonstrate the potential of the proposed model for predicting air pollutant levels and forecasting 
AQI.
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Figure 6.   A comparison of prediction graphs (Blue) and actual graphs (Brown) for sensor 3 test data for D+1st 
(short term period), D+5th (medium term period) and D+10th (long term period) day. The prediction graph 
follows the trend of the actual values graph in all three cases. The straight line encircled by the red dotted circle 
shows the mean values replaced by the missing values.

Table 3.   Error results for all the 10 sensors for Short, Medium, and Long Term Periods. Sensor 3 is the focus 
of the study and for comparative analysis for Objective 2 and other various models tested in this research work. 
Significant values are in bold.

Stations

RMSE (PM2.5) MAE (PM2.5) MSE (PM2.5) MRE (PM2.5)

D+1st D+5th D+10th D+1st D+5th D+10th D+1st D+5th D+10th D+1st D+5th D+10th

Sensor 1 0.1253 0.1410 0.1467 0.093 0.121 0.127 0.0102 0.0204 0.0305 0.416 0.905 1.77

Sensor 2 0.1834 0.1610 0.1396 0.093 0.104 0.078 0.0196 0.0152 0.0246 0.380 0.208 0.338

Sensor 3 0.1208 0.1097 0.069 0.082 0.083 0.045 0.0139 0.0184 0.0026 0.359 0.304 0.226

Sensor 4 0.1312 0.1395 0.1623 0.077 0.066 0.116 0.0114 0.0174 0.0179 0.267 0.265 0.286

sensor 5 0.0192 0.0284 0.0314 0.018 0.019 0.029 0.0022 0.0007 0.0005 0.442 0.234 0.234

Sensor 6 0.0345 0.0406 0.0426 0.028 0.029 0.029 0.0011 0.0021 0.0006 0.906 1.22 1.30

Sensor 7 0.1713 0.1804 0.1905 0.094 0.072 0.101 0.0537 0.0389 0.0341 1.42 0.961 1.40

Sensor 8 0.033 0.0231 0.0373 0.015 0.012 0.015 0.0009 0.0009 0.001 0.204 0.210 0.244

Sensor 9 0.0733 0.0765 0.0759 0.053 0.060 0.056 0.0072 0.0096 0.0046 0.787 0.608 0.926

Sensor 10 0.069 0.0626 0.1099 0.050 0.052 0.065 0.0106 0.0081 0.0116 0.956 1.26 2.17
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AQI prediction using multiple stations data via a merit‑based fusion scheme
In the third task, we conducted two different experiments to show the advantages of the fusion of data from 
multiple stations/sensors. In the first experiment, we trained individual models on data obtained from six dif-
ferent sensors/stations and predicted the air quality for the same stations (i.e., single input and single output). 
This way, we want to analyze the variations in the predictions of models trained on data from different stations. 
Here we take the leverage of the results obtained in Objective 1 in table 3. Significant variations can be observed 
in the results of these models for most of the target stations. These variations in the results provide the basis for 
our second experiment where we trained a single joint model on the data obtained from all the stations, which 
is then used to predict the air quality at each station.

Table 4 shows the results of the second experiment where a single joint model has been trained on the data 
obtained from the six sensors/stations for the prediction of air quality at different regions. A comparison of the 
results, where the fusion of sensors is done and fed as an input to the model and the individual sensors as input 
to the model, shows that in most cases, the joint model has almost the same or better predictions compared to 
the individual models trained on the single station data.

Reflections on AQI prediction using multiple stations data via a merit‑based fusion scheme
In this investigation, we presented findings concerning the prediction of PM2.5 levels specifically for the sub-
sequent day (referred to as D+1st day). The outcomes obtained provide support for the utilization of a single 
model trained on the complete array of city-installed sensors located across various points. This single generic 
model would facilitate predictions for distinct areas, thus superseding the need for separate models dedicated 
to individual sensors positioned at different locales.

Table 4.   Experimental results of the fusion vs individual sensors as input: Results exhibit superior 
(highlighted) or comparable performance. Significant values are in bold.

Inputs Outputs

Forecast based on fusion input
Forecast based on individual 
sensors Input

RMSE MAE MSE MRE RMSE MAE MSE MRE

Sensor 3,
Sensor 7,
Sensor 10,
Sensor 1,
Sensor 6,
Sensor9

Sensor 3 0.1373 0.1028 0.021 0.7113 0.1208 0.082 0.0139 0.359

Sensor 7 0.1092 0.0853 0.0113 2.0674 0.1713 0.094 0.0537 1.42

Sensor 10 0.1109 0.0753 0.0134 2.054 0.069 0.050 0.0106 0.956

Sensor 1 0.0626 0.0453 0.0221 0.388 0.1253 0.093 0.0102 0.416

Sensor 6 0.0413 0.032 0.0015 1.1883 0.0345 0.028 0.0011 0.906

Sensor 9 0.0891 0.0598 0.0052 0.9458 0.0733 0.053 0.0072 0.787
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Figure 7.   A comparison of prediction graphs (Blue) and actual graphs (Brown) for sensor 3 test data as an 
output and vehicle count from CCTV images as an input for D+1st (short term period), D+5th (medium term 
period) and D+10th (long term period) day. The straight line encircled by the red dotted circle shows the mean 
values replaced by the missing values.

Table 5.   Error values for Objective 2. RMSE, MAE, MSE, and MRE error values show nearly same results for 
the training of the model on both sensor’s data (sensor 3) and vehicle count from CCTV images (camera 9) as 
compared to training on only the sensor’s data (sensor 3) in Table 3.

Objective 2 error Results RMSE MAE MSE MRE

Short term (D+1st day) 0.1267 0.0847 0.027 0.572

Medium-term (D+5th day) 0.1236 0.069 0.0167 0.3527

Long term (D+10th day) 0.0761 0.0563 0.0045 0.3066
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Objective 2 (periodic traffic‑pollution patterns discovery)
Figure 7 shows the forecast results for the D+1st day (i.e. the next day), D+5th day, and D+10th day air pollutant 
values where the input of the model is the vehicle count from the images of the CCTV camera 9 and the forecast 
output is the PM2.5 values of station 3 (sensor 3). Some correlation can be observed in the graphs as the PM2.5 
values increase with an increase in the number of vehicles.

The results of the experiment in terms of RMSE, MAE, MSE, and MRE for D+1st, D+5th and D+10th days 
are shown in Table 5. RMSE of 0.1267 for the next day, RMSE of 0.1236 for the 5th day, and RMSE of 0.0761 
for the 10th day are observed as compared to the RMSE values of 0.1208 (D+1st), 0.1097 (D+5th) and 0.069 
(D+10th) from Table 3 of sensor 3 which is the focus of the study. The results obtained are almost nearly equal 
in both cases. Results obtained through MAE, MSE, and MRE are also comparable.

For our selected sensor 03 and camera 09, Fig. 8 shows patterns of PM2.5 concentration alongside traffic pat-
terns for four days of the week averaged over 05 months of available data. Two days were taken on the weekends 
and two days taken as working days, i.e., Monday and Wednesday, in order to study the different patterns on 
weekends and normal weekdays. We have observed that traffic activity is highest during the daytime, whereas at 
midnight, very few vehicles are captured in CCTV images, mostly consisting of parked vehicles. Traffic activity 
gradually increases from 05:00 am, peaking at 09:00 am to 12:00 pm, and then stabilizes during the daytime with 
an abrupt decrease of transport from 09:00 pm to 11:00 pm. Analysis of image data reveals patterns of urban 
life activities of the public, with traffic activity being the lowest at midnight. The pattern of PM2.5 also shows 
consistency, whether it’s a weekend or a working day. PM2.5 concentration is always on the rise in the morning 
time and peaks in the evening time but drops back to lower values at midnight as PM2.5 particles accumulate 
with the increase in traffic vehicle activities throughout the day and drop to a minimum with the gradual decrease 
in traffic activities later in the day. Also, these patterns can also be taken as precautionary measures in favor of 
the public to educate them to avoid evening outdoor activities due to poor air quality.

Reflections on periodic traffic‑pollution patterns discovery
The outcomes derived from this study advocate for the incorporation of vehicle counts extracted from CCTV 
camera imagery as an input parameter for forecasting AQI across various temporal scenarios: short-term, 
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Figure 8.   Daily pattern of PM2.5 concentration and public traffic, averaged over 05 months data: The pattern 
demonstrates the progressive accumulation of pollution from morning until evening, culminating in its peak 
during the evening hours, aligning with the heightened traffic levels observed throughout the daytime.
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medium-term, and long-term. This underscores the viability of utilizing CCTV traffic images as a viable alter-
native data source for AQI prediction purposes.

In the latest version of The Little Green Data Book28, 2017, two critical pollution indicators for PM2.5 expo-
sure were mentioned. These are the Mean Annual exposure to PM2.5 pollution and the percentage of the total 
population exposed to PM2.5 pollution above WHO guideline values. In the case of Vietnam, both values have 
been found to be alarmingly high with the PM2.5 levels recorded to be 28 ( µg/cu.m) and the percentage popula-
tion exposed to the same is 100 percent. This indicator covers the entire country. In comparison, our model gives 
localized predictions of PM2.5 levels at different times of the day helping the authorities make timely decisions 
on providing public guidance on when to avoid outdoor activities, ensuring public health safety.

AQI calculation
Once the air pollutant values are forecasted in Objective 1, the AQI is calculated using the procedures and index 
table provided by the US Environmental Protection Agency (EPA)1. The US EPA has provided a technical assis-
tance document for the reporting of Daily Air Quality, which includes all the necessary details for calculating 
AQI. According to this document, the air quality is divided into 6 different categories according to the range of 
AQI based on pollutant values as shown in Table 6.

Table 7 provides the comparison of the predicted PM2.5 values and the corresponding AQI and air quality 
category against the actual PM2.5 and AQI values and the air quality category. As can be seen, in the majority 
of the cases our proposed solutions have accurately predicted the air quality category based on the predicted 
PM2.5 and AQI values, which shows the effectiveness of the proposed solution. There are also a few cases where 
the proposed solution made incorrect predictions as highlighted in yellow. In the incorrect cases, the difference 
in the forecasted values is small, however, when used for the calculation of AQI and categorized the air quality 
it changed the description of the air. Moreover, for the first two highlighted cases where the model is predicting 
Moderate air quality instead of Good, is a false negative and is acceptable in terms of public health. However, 
the third highlighted case where the model is predicting Moderate instead of Unhealthy for Sensitive Groups is 
a false positive which is not good for the public health experience.

Comparative analysis
For comparative analysis, we used the station/sensor’s data only tested it on different models, and recorded the 
results in order to show the effectiveness of the proposed LSTM-based solutions including all the variants over 
the conventional models namely Auto Regressive Moving Average (ARMA) and its updated version Auto-Regres-
sive Integrated Moving Average (ARIMA). The contrast of outcomes is detailed in Table 8, revealing a notable 
enhancement in performance for the suggested approach across all iterations of the LSTM model, as compared to 

Table 6.   AQI ranges and Air Quality Categories as per US Environmental Protection Agency (EPA)1.

Color AQI range Air quality description

Green 0 to 50 Good

Yellow 51 to 100 Moderate

Orange 101 to 150 Unhealthy for sensitive groups

Red 151 to 200 Unhealthy

Purple 201 to 300 Very unhealthy

Maroon 301 to 500 Hazardous

Table 7.   Comparison of Actual values of PM2.5 concentration, calculated AQI and Air categories alongside 
their corresponding predicted PM2.5 values, calculated AQI and air categories. Predicting Moderate level 
instead of Good is acceptable but predicting Moderate instead of Unhealthy for Sensitive Groups can be 
harmful to the public. Significance values are in bold, italic and bolditalic.

Task_1

Actual values Predicted values

PM2.5 AQI Category PM2.5 AQI Category

D+1

14.6 60.8 Moderate 12.9 53.7 Moderate

14.8 61.6 Moderate 12.4 51.6 Moderate

15.8 65.8 Moderate 15.2 63.3 Moderate

D+5th

14.4 60 Moderate 16.4 68.3 Moderate

10.5 43.7 Good 13.3 55.4 Moderate

7.9 32.9 Good 12.9 53.7 Moderate

D+10th

32.9 137 Unhealthy for sensitive groups 29 120 Unhealthy for sensitive groups

24.7 102.9 Unhealthy for sensitive groups 17.7 73.75 Moderate

14.4 60 Moderate 13.1 54.5 Moderate
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both ARIMA and ARMA methods. Notably, among the various LSTM iterations - namely Bi-directional LSTM, 
CNN LSTM, and ConvLSTM - the ConvLSTM variant stands out as the most proficient performer. Stacked LSTM 
exhibits comparatively inferior performance compared to other LSTM variants, while ARIMA outperforms 
ARMA. Through a comparison between ARIMA and Stacked LSTM outcomes, it becomes evident that Stacked 
LSTM demonstrates performance enhancements of 48%, 67%, and 173% for short, medium, and long-term 
periods, respectively. These findings collectively underscore the efficacy of the recommended LSTM framework.

Summary and lessons learned
The proposed solution for forecasting in Objective 1 i.e. AQI Prediction, performed well as compared to the con-
ventional time series analysis models. For object detection in images in Objective 2 i.e. Periodic traffic-pollution 
patterns discovery, initially, we used YOLOv5 but the results were not good. The model missed a few vehicles in 
most of the images, which resulted in a lower count of the vehicles to be fed into the model. To overcome this 
issue, we employed YOLOv8x which significantly improved the vehicle detection capabilities of the framework.

During the analysis, we observed that data must exhibit seasonality and consistency for better forecasting of 
AQI. In order to enhance prediction accuracy, it is essential to have access to an extended historical dataset that 
encompasses patterns occurring throughout the entire year. However, it is crucial to remain cognizant of the 
insights presented by29, which underscore the limitations and potential drawbacks associated with the adoption 
of Big Data. Their research cautions against the presumption that Big Data can entirely supplant traditional data 
sources, as this does not inherently assure greater accuracy or reliability. Additionally, the text emphasizes the 
valuable role of traditional “small data,” noting that it can provide distinctive insights that may remain elusive 
when exclusively relying on big data. The narrative advocates for the integration of both conventional and novel 
data reservoirs. These two points of having small data and integration of new sources with conventional resources 
are the key strengths of our work. We also found dealing with missing logs very challenging because of faulty 
sensors and CCTV cameras. This offline time of sensors and CCTV cameras has an impact on the prediction 
results and disables the model to completely learn the urban activities. Upon analyzing the actual data against 
the predicted data, we noticed that the error tends to rise for larger values. Nevertheless, the occurrence of these 
higher values is so infrequent that it does not significantly influence the predictive outcomes of our model.

Moreover, in the task of AQI prediction using Multiple sensor data via a merit-based fusion scheme, a joint 
model by combining data from multiple stations/sensors for training is more effective compared to the indi-
vidual models trained on single station/sensor data as these sensors may compensate for the missing values 
from some of the other sensors. Additionally, adopting this approach would enable the utilization of a unified 
model, eliminating the necessity for employing distinct models corresponding to different geographical regions.

Conclusion and future work
This work is focused on developing a comprehensive forecasting framework for air quality by utilizing real-
time data with real-time issues from multiple sources, including air pollutant sensors and CCTV cameras. The 
proposed framework forecasts air quality over short, medium, and long-term periods. our investigation delved 
into the effectiveness of a consolidated model trained on sensors deployed across diverse locations. This analy-
sis highlights the feasibility of employing a singular generic model, eliminating the need for individual models 
corresponding to each sensor installation. Furthermore, We also explored the potential of CCTV cameras as an 
alternative input for predicting air quality. By detecting and counting vehicles in the CCTV images, we aimed to 
establish a correlation between vehicle count and air pollutant values. Our analysis led us to the conclusion that 
the vehicle count attribute derived from CCTV images holds significant importance in contrast to data from air 
pollutant sensors, particularly in the context of air pollutant (PM2.5) prediction. With this in mind, the integra-
tion of vehicle count data from CCTV images presents a promising alternative for predicting air quality. During 
the experiments and analysis, we evaluated LSTM and its variants as compared to the ML algorithms namely 
ARMA and ARIMA, and demonstrated their predictive capabilities by obtaining an improvement of 48%, 67%, 
and 173% for short-term, medium-term, and long-term periods, respectively, of Stacked LSTM over ARIMA.

In the future, we aim to assess the potential enhancements that transformers, when employed as a predictive 
model, could bring to existing methodology. We also aim to investigate the extent of performance improvement 
achievable through the involvement of various features from weather stations data like humidity, temperature, 

Table 8.   Results comparison between different variants of LSTM and conventional models i.e. ARMA and 
ARIMA. ConvLSTM produces the best results (highlighted in Green). Compared with Stacked LSTM, ARIMA 
results are lagging around 48%, 67% and 173% for the short, medium and long-term periods, respectively.

Stations

RMSE (PM2.5) MAE (PM2.5) MSE (PM2.5) MRE (PM2.5)

D+1st D+5th D+10th D+1st D+5th D+10th D+1st D+5th D+10th D+1st D+5th D+10th

ARMA 0.5243 0.5329 0.5378 0.5032 0.5162 0.5183 0.435 0.529 0.5132 2.723 1.651 1.589

ARIMA 0.1788 0.1833 0.1889 0.1598 0.1629 0.1643 0.1039 0.1135 0.1247 1.065 0.9531 0.6925

Stacked LSTM 0.1208 0.1097 0.069 0.032 0.083 0.045 0.0139 0.0184 0.0026 0.3592 0.3046 0.2262

Bi-directional LSTM 0.0294 0.0593 0.0454 0.0239 0.0377 0.0353 0.0122 0.0225 0.0038 0.355 0.3681 0.2946

CNN LSTM 0.0180 0.0527 0.0589 0.0086 0.0378 0.0442 0.0012 0.0187 0.0025 0.358 0.352 0.306

ConvLSTM 0.0135 0.0539 0.0518 0.0068 0.0389 0.0438 0.0118 0.0192 0.0035 0.351 0.363 0.258
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wind speed, pressure, rainfall, and dew point, etc. and from CCTV traffic images like a rainy day, sunny day, 
model and make a year of the vehicle and its emission rates, etc.

Data availibility
The datasets used in this work could be downloaded from the source cited in the paper while the additional 
information is available from the corresponding author on reasonable request.
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